1,442
Views
12
CrossRef citations to date
0
Altmetric
Articles

Modeling thermal conductivity of ethylene glycol-based nanofluids using multivariate adaptive regression splines and group method of data handling artificial neural network

, , ORCID Icon, &
Pages 379-390 | Received 12 Oct 2019, Accepted 09 Jan 2020, Published online: 05 Feb 2020

References

  • Agarwal, R., Verma, K., Agrawal, N. K., Duchaniya, R. K., & Singh, R. (2016). Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Applied Thermal Engineering, 102, 1024–1036. doi: 10.1016/j.applthermaleng.2016.04.051
  • Ahmadi, M. H., Ahmadi, M. A., Mehrpooya, M., & Rosen, M. A. (2015). Using GMDH neural networks to model the power and torque of a Stirling engine. Sustainability (Switzerland), 7(2), 2243–2255. doi: 10.3390/su7022243
  • Ahmadi, M. H., Hajizadeh, F., Rahimzadeh, M., Shafii, M. B., Chamkha, A. J., Lorenzini, G., & Ghasempour, R. (2018). Application GMDH artificial neural network for modeling of Al2O3/water and Al2O3/ethylene glycol thermal conductivity. International Journal of Heat and Technology, 36(3), 773–782.
  • Ahmadi, M. H., Mirlohi, A., Nazari, M. A., & Ghasempour, R. (2018). A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids, 265(September), 181–188. doi: 10.1016/J.MOLLIQ.2018.05.124
  • Ahmadi, M. H., Nazari, M. A., Ghasempour, R., Madah, H., Shafii, M. B., & Ahmadi, M. A. (2018). Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 541(March), 154–164. doi: 10.1016/J.COLSURFA.2018.01.030
  • Ahmadi, M. H., Sadeghzadeh, M., Raffiee, A. H., & Chau, K.-w. (2019). Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes. Engineering Applications of Computational Fluid Mechanics, 13(1), 327–336. doi: 10.1080/19942060.2019.1582109
  • Ahmed, A., Baig, H., Sundaram, S., & Mallick, T. K. (2019). Use of nanofluids in solar PV/thermal systems. International Journal of Photoenergy, 2019(June), 1–17. doi: 10.1155/2019/8039129
  • Akilu, S., Baheta, A. T., Minea, A. A., & Sharma, K. V. (2017). Rheology and thermal conductivity of non-porous Silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 88(November), 245–253. doi: 10.1016/J.ICHEATMASSTRANSFER.2017.08.001
  • Alhuyi Nazari, M., Ahmadi, M. H., Lorenzini, G., Maddah, H., Alavi, M. F., & Ghasempour, R. (2018). Modeling thermal conductivity ratio of CuO/ethylene glycol nanofluid by using artificial neural network. Defect and Diffusion Forum, 388(October), 39–43. doi: 10.4028/www.scientific.net/DDF.388.39
  • Arya, H., Sarafraz, M. M., & Arjomandi, M. (2018). Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger. Journal of Mechanical Science and Technology, 32(8), 3975–3982. doi: 10.1007/s12206-018-0748-x
  • Esfe, M. H., Esfande, S., and Rostamian, S. H. (2017, November). Experimental evaluation, new correlation proposing and ANN modeling of thermal conductivity of ZnO-DWCNT/EG hybrid nanofluid for internal combustion engines applications. Applied Thermal Engineering, 133, 452–463. doi: 10.1016/j.applthermaleng.2017.11.131
  • Gandomkar, A., Saidi, M. H., Shafii, M. B., Vandadi, M., & Kalan, K. (2017). Visualization and comparative investigations of pulsating Ferro-fluid heat pipe. Applied Thermal Engineering, 116(April), 56–65. doi: 10.1016/J.APPLTHERMALENG.2017.01.068
  • Gao, Y., Wang, H., Sasmito, A. P., & Mujumdar, A. S. (2018). Measurement and modeling of thermal conductivity of graphene Nanoplatelet water and ethylene glycol base nanofluids. International Journal of Heat and Mass Transfer, 123(August), 97–109. doi: 10.1016/J.IJHEATMASSTRANSFER.2018.02.089
  • Goudarzi, K., & Jamali, H. (2017). Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Applied Thermal Engineering, 118(May), 510–517. doi: 10.1016/J.APPLTHERMALENG.2017.03.016
  • Hemmat Esfe, M., Saedodin, S., Bahiraei, M., Toghraie, D., Mahian, O., & Wongwises, S. (2014). Thermal conductivity modeling of MgO/EG nanofluids using experimental data and Artificial Neural network. Journal of Thermal Analysis and Calorimetry, 118(1), 287–294. doi: 10.1007/s10973-014-4002-1
  • Islam, R., & Shabani, B. (2019). Prediction of electrical conductivity of TiO2 water and ethylene glycol-based nanofluids for cooling application in low temperature PEM fuel cells. In Energy Procedia, 160:550–57. Elsevier Ltd. doi: 10.1016/j.egypro.2019.02.205
  • Izadkhah, M.-S., Erfan-Niya, H., & Heris, S. Z. (2019). Influence of graphene oxide nanosheets on the stability and thermal conductivity of nanofluids. Journal of Thermal Analysis and Calorimetry, 135(1), 581–595. doi: 10.1007/s10973-018-7100-7
  • Jiang, H., Zhang, Q., & Shi, L. (2015). Effective thermal conductivity of carbon nanotube-based nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 55(October), 76–81. doi: 10.1016/j.jtice.2015.03.037
  • Komeilibirjandi, A., Raffiee, A. H., Maleki, A., Nazari, M. A., and Shadloo, M. S. (2019, September). Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. Journal of Thermal Analysis and Calorimetry, 1–11. doi: 10.1007/s10973-019-08838-w
  • Lee, S., Choi, S. U.-S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280–289. doi: 10.1115/1.2825978
  • Li, C. H., & Peterson, G. P. (2007). The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. Journal of Applied Physics, 101(4), 044312. doi: 10.1063/1.2436472
  • Li, X., Zou, C., Lei, X., & Li, W. (2015). Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. International Journal of Heat and Mass Transfer, 89(October), 613–619. doi: 10.1016/J.IJHEATMASSTRANSFER.2015.05.096
  • Liu, M.-S., Lin, M. C.-C., Huang, I.-T., & Wang, C.-C. (2006). Enhancement of thermal conductivity with CuO for nanofluids. Chemical Engineering & Technology, 29(1), 72–77. doi: 10.1002/ceat.200500184
  • Michael, M., Zagabathuni, A., Ghosh, S., & Pabi, S. K. (2019). Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids. Journal of Thermal Analysis and Calorimetry, 137(2), 369–380. doi: 10.1007/s10973-018-7965-5
  • Nazari, M. A., Ghasempour, R., Ahmadi, M. H., Heydarian, G., & Shafii, M. B. (2018). Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. International Communications in Heat and Mass Transfer, 91, 90–94. doi: 10.1016/j.icheatmasstransfer.2017.12.006
  • Niranjan, G., Chilambarasan, L., Raja Sekhar, Y., & Vikranthreddy, D. (2017). Performance studies on solar collector with grooved absorber tube configuration using aqueous ZnO–ethylene glycol nanofluids. Applied Solar Energy (English Translation of Geliotekhnika, 53(3), 215–221. doi: 10.3103/S0003701X17030082
  • Oduro, S. D., Metia, S., Duc, H., and Ha, Q. P. (2015). Predicting carbon monoxide emissions with multivariate adaptive regression splines (MARS) and artificial neural networks (ANNs). In Proceedings of the 32nd International Symposium on Automation and Robotics in Construction and Mining (ISARC 2015). doi: 10.22260/ISARC2015/0122
  • Omrani, A. N., Esmaeilzadeh, E., Jafari, M., & Behzadmehr, A. (2019). Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diamond and Related Materials, 93(March), 96–104. doi: 10.1016/J.DIAMOND.2019.02.002
  • Put, R., Xu, Q. S., Massart, D. L., & Vander Heyden, Y. (2004). Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies. Journal of Chromatography A, 1055(1–2), 11–19. doi: 10.1016/j.chroma.2004.07.112
  • Ramezanizadeh, M., Ahmadi, M. H., Nazari, M. A., Sadeghzadeh, M., & Chen, L. (2019). A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 114(October), 109345. doi: 10.1016/J.RSER.2019.109345
  • Ramezanizadeh, M., and Nazari, M. A. (2019, August). Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network. International Journal of Low-Carbon Technologies, 14, 468–474. doi: 10.1093/ijlct/ctz030
  • Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., & Açıkkalp, E. (2018). Application of nanofluids in thermosyphons: A review. Journal of Molecular Liquids, 272(December), 395–402. doi: 10.1016/J.MOLLIQ.2018.09.101
  • Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., & Chen, L. (2019). A review on the approaches applied for cooling fuel cells. International Journal of Heat and Mass Transfer, 139(August), 517–525. doi: 10.1016/J.IJHEATMASSTRANSFER.2019.05.032
  • Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., Lorenzini, G., & Pop, I. (2019, March). A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. Journal of Thermal Analysis and Calorimetry, 1–17. doi: 10.1007/s10973-019-08154-3
  • Shu, L., Zhang, J., Fu, B., Xu, J., Tao, P., Song, C., … Deng, T. (2019). Ethylene glycol-based solar-thermal fluids dispersed with reduced graphene oxide. RSC Advances, 9(18), 10282–10288. doi: 10.1039/C8RA09533G
  • Simpson, S., Schelfhout, A., Golden, C., & Vafaei, S. (2019). Nanofluid thermal conductivity and effective parameters. Applied Sciences, 9(1), 87. doi: 10.3390/app9010087
  • Taherialekouhi, R., Rasouli, S., & Khosravi, A. (2019). An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. International Journal of Heat and Mass Transfer, 145(December), 118751. doi: 10.1016/J.IJHEATMASSTRANSFER.2019.118751
  • Talluri, L., Manfrida, G., & Fiaschi, D. (2019). Thermoelectric energy storage with geothermal heat integration – exergy and exergo-economic analysis. Energy Conversion and Management, 199(November), 111883. doi: 10.1016/J.ENCONMAN.2019.111883
  • Vasudev, V., & Dondapati, R. S. (2017). Experimental and exergy analysis of ammonia/water absorption system using ethylene glycol [C2H4(OH)2] in the evaporator. Energy Procedia, 109(March), 401–408. doi: 10.1016/J.EGYPRO.2017.03.039
  • Wang, X., Xu, X., & Choi, S. U. S. (1999). Thermal conductivity of nanoparticle – fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4), 474–480. doi: 10.2514/2.6486
  • Warrier, P., & Teja, A. (2011). Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Research Letters, 6(1), 247. doi: 10.1186/1556-276X-6-247
  • Xie, H., Yu, W., & Chen, W. (2010). Mgo nanofluids: Higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. Journal of Experimental Nanoscience, 5(5), 463–472. doi: 10.1080/17458081003628949
  • Xu, Q.-S., Daszykowski, M., Walczak, B., Daeyaert, F., de Jonge, M. R., Heeres, J., … Massarta, D. L. (2004). Multivariate adaptive regression splines – studies of HIV reverse transcriptase inhibitors. Chemometrics and Intelligent Laboratory Systems, 72(1), 27–34. doi: 10.1016/J.CHEMOLAB.2004.02.007
  • Zamzamian, A., Oskouie, S. N., Doosthoseini, A., Joneidi, A., & Pazouki, M. (2011). Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science, 35(3), 495–502. doi: 10.1016/j.expthermflusci.2010.11.013
  • Zoqi, M. J., Ghamgosar, M., Ganji, M., & Fallahi, S. (2016). Application of GMDH and genetic algorithm in fraction in biogas from landfill modeling. Journal of Environmental Science and Technology, 18(3), 1–12.
  • Żyła, G. (2017). Viscosity and thermal conductivity of MgO–EG nanofluids. Journal of Thermal Analysis and Calorimetry, 129(1), 171–180. doi: 10.1007/s10973-017-6130-x