5,552
Views
6
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of flow past a triangular prism with fluid–structure interaction

, ORCID Icon, , , &
Pages 462-476 | Received 29 Jul 2019, Accepted 13 Dec 2019, Published online: 12 Feb 2020

References

  • Agrwal, N., Dutta, S., & Gandhi, B. K. (2016). Experimental investigation of flow field behind triangular prisms at intermediate Reynolds number with different apex angles. Experimental Thermal and Fluid Science, 72, 97–111.
  • Bao, Y., Zhou, D., & Zhao, Y. J. (2010). A two-step Taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence angles. International Journal for Numerical Methods in Fluids, 62(11), 1181–1208.
  • Binder, M. D., Hirokawa, N., & Windhorst, U. (2009). Lagrangian description. In: Binder, M. D., Hirokawa, N., & Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin.
  • Camarri, S., Salvetti, M. V., & Buresti, G. (2006). Large-eddy simulation of the flow around a triangular prism with moderate aspect ratio. Journal of Wind Engineering & Industrial Aerodynamics, 94(5), 309–322
  • Dang, T. S., & Meschke, G. (2014). An ALE–PFEM method for the numerical simulation of two-phase mixture flow. Computer Methods in Applied Mechanics & Engineering, 278(7), 599–620.
  • Das, J., & Ray, R. N. (2017). 3D modeling of high temperature superconducting hysteresis motor using COMSOL multiphysics. Paper presented at the Industrial Automation & Electromechanical Engineering Conference.
  • Eiamsa-Ard, S., Sripattanapipat, S., & Promvonge, P. (2012). Numerical heat transfer analysis in turbulent channel flow over a side-by-side triangular prism pair. Journal of Engineering Thermophysics, 21(2), 95–110.
  • Ghalandari, M., Mirzadeh Koohshahi, E., Mohamadian, F., Shamshirband, S., & Chau, K. W. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264.
  • Graf, W. H., & Yulistiyanto, B. (1998). Experiments on flow around a cylinder; the velocity and vorticity fields. Journal of Hydraulic Research, 36(4), 637–654.
  • Hai, B. J., Zhong, Q. C., & Yun, P. Z. (2013). Function airfoil and its pressure distribution and lift coefficient calculation. Applied Mechanics & Materials, 328, 351–356.
  • Hank, S., Gavrilyuk, S., Favrie, N., & Massoni, J. (2017). Impact simulation by an Eulerian model for interaction of multiple elastic-plastic solids and fluids. International Journal of Impact Engineering, 109, 104–111.
  • Hines, J., Thompson, G. P., & Lien, F. S. (2009). A turbulent flow over a square cylinder with prescribed and autonomous motions. Engineering Applications of Computational Fluid Mechanics, 3(4), 573–586.
  • Home, D., & Lightstone, M. F. (2014). Numerical investigation of quasi-periodic flow and vortex structure in a twin rectangular subchannel geometry using detached eddy simulation. Nuclear Engineering & Design, 270(5), 1–20.
  • Huang, H., & Ying, F. (2007). MHD effect on heat transfer in liquid metal free surface flow around a cylinder. Engineering Applications of Computational Fluid Mechanics, 1(2), 88–95.
  • Ibrahim, I. H., Ng, E. Y. K., & Wong, K. (2011). Flight maneuverability characteristics of the F-16 CFD and correlation with its intake total pressure recovery and distortion. Engineering Applications of Computational Fluid Mechanics, 5(2), 223–234.
  • Ikeda, T., Harada, I., & Tokoi, H. (1980). Measurements of rotating flow around circular cylinder. Journal of Nuclear Science & Technology, 17(3), 249–251.
  • Jafari, R., & Okutucu-Özyurt, T. (2016). 3D numerical modeling of boiling in a microchannel by arbitrary Lagrangian-Eulerian (ALE) method. Applied Mathematics and Computation, 272, 593–603.
  • Kakuda, K., Miura, S., & Tosaka, N. (2006). Finite element simulation of 3D flow around a circular cylinder. International Journal of Computational Fluid Dynamics, 20(3-4), 193–209.
  • Lee, S. J., & Lim, H. C. (2001). A numerical study on flow around a triangular prism located behind a porous fence. Fluid Dynamics Research, 28(3), 209–221.
  • Mcintyre, M. E. (1980). An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction. Pure & Applied Geophysics, 118(1), 152–176.
  • Meng, F. Q., He, B. J., Zhu, J., Zhao, D. X., Darko, A., & Zhao, Z. Q. (2018). Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. Journal of Building Engineering, 16, 146–158.
  • Mosavi, A., Shamshirband, S., Salwana, E., Chau, K., & Tah, J. H. M. (2019). Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Engineering Applications of Computational Fluid Mechanics, 13(1), 482–492.
  • Münch, C., Ausoni, P., Braun, O., Farhat, M., & Avellan, F. (2010). Fluid–structure coupling for an oscillating hydrofoil. Journal of Fluids & Structures, 26(6), 1018–1033.
  • Murayama, M., Nakahashi, K., & Sawada, K. (2001). Simulation of vortex breakdown using adaptive grid refinement with vortex-center identification. AIAA Journal, 39(7), 1305–1312.
  • Mustto, A. A., & Bodstein, G. C. R. (2011). Subgrid-scale modeling of turbulent flow around circular cylinder by mesh-free vortex method. Engineering Applications of Computational Fluid Mechanics, 5(2), 259–275.
  • Ng, Y. T., Min, C., & Gibou, F. (2009). An efficient fluid–solid coupling algorithm for single-phase flows. Journal of Computational Physics, 228(23), 8807–8829.
  • Pralits, J. O., Luca, B., & Flavio, G. (2010). Instability and sensitivity of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 650(1), 513–536.
  • Prasath, S. G., Sudharsan, M., Kumar, V. V., Diwakar, S. V., Sundararajan, T., & Tiwari, S. (2014). Effects of aspect ratio and orientation on the wake characteristics of low Reynolds number flow over a triangular prism. Journal of Fluids & Structures, 46(2), 59–76.
  • Ramezanizadeh, M., Alhuyi Nazari, M., Ahmadi, M. H., & Chau, K. (2019). Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Engineering Applications of Computational Fluid Mechanics, 13(1), 40–47.
  • Rival, D. E., Kriegseis, J., Schaub, P., Widmann, A., & Tropea, C. (2014). Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Experiments in Fluids, 55(1), 1–8.
  • Roohi, E., Zahiri, A. P., & Passandideh-Fard, M. (2013). Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Applied Mathematical Modelling, 37(9), 6469–6488.
  • Saha, A. K. (2013). Unsteady flow past a finite square cylinder mounted on a wall at low Reynolds number. Computers & Fluids, 88(11), 599–615.
  • Sorokin, A. P., Alexeev, V. V., Kuzina, J. A., & Konovalov, M. A. (2017). The problems of using a high-temperature sodium coolant in nuclear power plants for the production of hydrogen and other innovative applications. Paper presented at the Journal of Physics Conference Series.
  • Suangga, M., Hidayat, I., Juliastuti, J., & Bontan, D. J. (2017). The analysis of cable forces based on natural frequency. Paper presented at the IOP Conference Series: Earth & Environmental Science.
  • Sumner, D., Hemingson, H. B., Deutscher, D. M., & Barth, J. E. (2009). PIV measurements of the flow around oscillating cylinders at low KC numbers. IUTAM Symposium on Unsteady Separated Flows and Their Control.
  • Wang, G., Evans, G. M., & Jameson, G. J. (2017). Bubble-particle detachment in a turbulent vortex II—computational methods. Minerals Engineering, 102, 58–67.
  • Yan, B., Zhou, D., & Jiahuang, T. U. (2013). Flow characteristics of two in-phase oscillating cylinders in side-by-side arrangement. Computers & Fluids, 71(1), 124–145.
  • Yu, X. J., Wang, J. X., & Li, Y. (2009). Study of fluid-solid simulation on the large-scale hydrostatic bearing of hollow coaxial. Materials Science Forum, 628-629, 281–286.
  • Yue, Q., Liu, G. R., Liu, J., Min, L., & Dong, R. (2018). Modelling techniques for fluid–solid coupling dynamics of bundle tubes vibrating and colliding in fluids. International Journal of Computational Fluid Dynamics, 32(1), 1–14.