1,892
Views
4
CrossRef citations to date
0
Altmetric
Articles

Sharp interface immersed boundary method for simulating three-dimensional swimming fish

, &
Pages 534-544 | Received 21 May 2019, Accepted 08 Nov 2019, Published online: 26 Feb 2020

References

  • Abgrall, R., Beaugendre, H., & Dobrzynski, C. (2014). An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. Journal of Computational Physics, 257, 83–101. doi: 10.1016/j.jcp.2013.08.052
  • Akbarian, E., Najafi, B., Jafari, M., Ardabili, S. F., Shamshirband, S., & Chau, K. (2018). Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine. Engineering Applications of Computational Fluid Mechanics, 12(1), 517–534. doi: 10.1080/19942060.2018.1472670
  • Alvarado, P. V. Y. (2007). Design of biomimetic compliant devices for locomotion in liquid environments. Cambridge, MA: Massachusetts Institute of Technology.
  • Balaras, E. (2004). Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Computers & Fluids, 33, 375–404. doi: 10.1016/S0045-7930(03)00058-6
  • Borazjani, I., & Sotiropoulos, F. (2008). Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 211, 1541–1558. doi: 10.1242/jeb.015644
  • Borazjani, I., & Sotiropoulos, F. (2009). Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 212, 576–592. doi: 10.1242/jeb.025007
  • Borazjani, I., & Sotiropoulos, F. (2010). On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. Journal of Experimental Biology, 213, 89–107. doi: 10.1242/jeb.030932
  • Buchholz, H. J., & Smits, A. J. (2005). Wake of a low aspect ratio pitching plate. Physics of Fluids, 17, 091102. doi: 10.1063/1.1942512
  • Cheng, J. Y., & Blickhan, R. (1994). Note on the calculation of propeller efficiency using elongated body theory. Journal of Experimental Biology, 192, 169–177.
  • Choi, J. I., Oberoi, R. C., Edwards, J. R., & Rosati, J. A. (2007). An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224, 757–784. doi: 10.1016/j.jcp.2006.10.032
  • Cui, Z., Gu, X., Li, K., & Jiang, H. (2017). CFD studies of the effects of waveform on swimming performance of carangiform fish. Applied Sciences, 7(2), 149. doi: 10.3390/app7020149
  • Cui, Z., Yang, Z., Jiang, H. Z., Huang, W. X., & Shen, L. (2018). A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries. International Journal of Computational Methods, 15(1), 1750080. doi: 10.1142/S0219876217500803
  • Dong, H., Mittal, R., & Najjar, F. M. (2006). Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. Journal of Fluid Mechanics, 566, 309. doi: 10.1017/S002211200600190X
  • Eloy, C. (2012). Optimal Strouhal number for swimming animals. Journal of Fluids and Structures, 30, 205–218. doi: 10.1016/j.jfluidstructs.2012.02.008
  • Fadlun, E. A., Verzicco, R., Orlandi, P., & Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161, 35–60. doi: 10.1006/jcph.2000.6484
  • Gao, X., Zhang, Q., & Tang, Q. (2016). Fluid-structure interaction analysis of parachute finite mass inflation. International Journal of Aerospace Engineering, 1, 1–8.
  • Ge, L., & Sotiropoulos, F. (2007). A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. Journal of Computational Physics, 225, 1782–1809. doi: 10.1016/j.jcp.2007.02.017
  • Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3, 1760–1765. doi: 10.1063/1.857955
  • Ghalandari, M., Koohshahi, E. M., Mohamadian, F., Shamshirband, S., & Chau, K. W. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264. doi: 10.1080/19942060.2019.1578696
  • Gilmanov, A., & Sotiropoulos, F. (2005). A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. Journal of Computational Physics, 207, 457–492. doi: 10.1016/j.jcp.2005.01.020
  • Hou, G., Wang, J., & Layton, A. (2012). Numerical methods for fluid-structure interaction – A review. Communications in Computational Physics, 12, 337–377. doi: 10.4208/cicp.291210.290411s
  • Kim, J., Kim, D., & Choi, H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics, 171, 132–150. doi: 10.1006/jcph.2001.6778
  • Lai, M. C., & Peskin, C. S. (2000). An immersed boundary method with formal secondorder accuracy and reduced numerical viscosity. Journal of Computational Physics, 160, 705–719. doi: 10.1006/jcph.2000.6483
  • Le, D. V., Khoo, B. C., & Peraire, J. (2006). An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries. Journal of Computational Physics, 220, 109–138. doi: 10.1016/j.jcp.2006.05.004
  • Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A: Fluid Dynamics, 4, 633–635. doi: 10.1063/1.858280
  • Liu, Q., & Vasilyev, O. V. (2007). A Brinkman penalization method for compressible flows in complex geometries. Journal of Computational Physics, 227, 946–966. doi: 10.1016/j.jcp.2007.07.037
  • Löhner, R., Haug, E., Michalski, A., Muhammad, B., Drego, A., Nanjundaiah, R., & Zarfam, R. (2015). Recent advances in computational wind engineering and fluid–structure interaction. Journal of Wind Engineering and Industrial Aerodynamics, 144, 14–23. doi: 10.1016/j.jweia.2015.04.014
  • Maitri, R. V., Das, S., Kuipers, J. A. M., Padding, J. T., & Peters, E. A. J. F. (2018). An improved ghost-cell sharp interface immersed boundary method with direct forcing for particle laden flows. Computers & Fluids, 175, 111–128. doi: 10.1016/j.compfluid.2018.08.018
  • Meyer, M., Devesa, A., Hickel, S., Hu, X., & Adams, N. (2010). A conservative immersed interface method for large-eddy simulation of incompressible flows. Journal of Computational Physics, 229, 6300–6317. doi: 10.1016/j.jcp.2010.04.040
  • Mittal, R., & Iaccarino, G. (2005). Immersed boundary methods. Annual Review of Fluid Mechanics, 37, 239–261. doi: 10.1146/annurev.fluid.37.061903.175743
  • Mosavi, A., Shamshirband, S., Salwana, E., Chau, K., & Tah, J. H. M. (2019). Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Engineering Applications of Computational Fluid Mechanics, 13(1), 482–492. doi: 10.1080/19942060.2019.1613448
  • Mou, B., He, B.-J., Zhao, D.-X., & Chau, K. (2017). Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293–309. doi: 10.1080/19942060.2017.1281845
  • Peskin, C. S. (1972). Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10, 252–271. doi: 10.1016/0021-9991(72)90065-4
  • Piñeirua, M., Godoy-Diana, R., & Thiria, B. (2015). Resistive thrust production can be as crucial as added mass mechanisms for inertial undulatory swimmers. Physical Review E, 92(2), 021001. doi: 10.1103/PhysRevE.92.021001
  • Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., & Chau, K. (2019). Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Engineering Applications of Computational Fluid Mechanics, 13(1), 40–47. doi: 10.1080/19942060.2018.1518272
  • Shrivastava, M., Malushte, M., Agrawal, A., & Sharma, A. (2017). CFD study on hydrodynamics of three fish-like undulating hydrofoils in side-by-side arrangement. In Fluid mechanics and fluid power–contemporary research. New Delhi: Springer.
  • Souli, M. H., & Benson, D. J. (2013). Arbitrary Lagrangian Eulerian and fluid-structure interaction: Numerical simulation. Hoboken, New Jersey: John Wiley & Sons.
  • Videler, J. J. (1993). Fish swimming. London, UK: Chapman and Hall.
  • Wang, Z., Du, L., & Sun, X. (2019). Adaptive mesh refinement for simulating fluid-structure interaction using a sharp interface immersed boundary method. Computers & Fluids. In press. https://doi.org/10.1016/j.compfluid.2019.06.002.
  • Yang, J., & Balaras, E. (2006). An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. Journal of Computational Physics, 215, 12–40. doi: 10.1016/j.jcp.2005.10.035
  • Zakaria, M. S., Ismail, F., Tamagawa, M., Aziz, A. F. A., Wiriadidjaja, S., Basri, A. A., & Ahmad, K. A. (2017). Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Medical & Biological Engineering & Computing, 55(9), 1519–1548. doi: 10.1007/s11517-017-1688-9
  • Zhu, C., Seo, J. H., & Mittal, R. (2019). A graph-partitioned sharp-interface immersed boundary solver for efficient solution of internal flows. Journal of Computational Physics, 386, 37–46. doi: 10.1016/j.jcp.2019.01.038