1,135
Views
6
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation for the differences between FTN/WPN engine models aerodynamic influence on BWB300 airframe

, &
Pages 566-579 | Received 11 Nov 2019, Accepted 17 Feb 2020, Published online: 26 Feb 2020

References

  • Abadi, A. M., Sadi, M., Farzaneh-Gord, M., Ahmadi, M. H., Kumar, R., & Chau, K. W. (2020). A numerical and experimental study on the energy efficiency of a regenerative heat and mass exchanger utilizing the counter-flow Maisotsenko cycle. Engineering Applications of Computational Fluid Mechanics, 14(1), 1–12. doi: 10.1080/19942060.2019.1617193
  • Ammar, S., Legros, C., & Trépanier, J.-Y. (2017). Conceptual design, performance and stability analysis of a 200 passengers blended wing body aircraft. Aerospace Science and Technology, 71, 325–336. doi: 10.1016/j.ast.2017.09.037
  • Brodersen, O. (2002). Drag prediction of engine-airframe interference effects using unstructured Navier-Stokes calculations. Journal of Aircraft, 39(6), 927–935. doi: 10.2514/2.3037
  • Deere, K. A., Luckring, J. M., McMillin, S. N., Flamm, J. D., & Roman, D. (2016). CFD predictions for transonic performance of the ERA hybrid wing-body configuration (Invited). 54th AIAA aerospace sciences meeting.
  • El-Sayed, A. F. (2017). Aircraft propulsion and gas turbine engines. Boca Raton: CRC Press.
  • Farzaneh-Gord, M., Faramarzi, M., Ahmadi, M. H., Sadi, M., Shamshirband, S., Mosavi, A., & Chau, K. W. (2019). Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. Engineering Applications of Computational Fluid Mechanics, 13(1), 642–663. doi: 10.1080/19942060.2019.1624197
  • Flamm, J. D., James, K., & Bonet, J. T. (2016). Overview Of ERA integrated technology demonstration (ITD) 51A ultra-high bypass (UHB) integration for hybrid wing body (HWB) (Invited). 54th AIAA aerospace sciences meeting.
  • Gang, Y., Dong, L., Zhenli, C., & Zeyu, Z. (2019). Blended wing body thrust reverser cascade feasibility evaluation through CFD. IEEE Access, 7, 155184–155193. doi: 10.1109/ACCESS.2019.2949062
  • Ghalandari, M., Shamshirband, S., Mosavi, A., & Chau, K. W. (2019). Flutter speed estimation using presented differential quadrature method formulation. Engineering Applications of Computational Fluid Mechanics, 13(1), 804–810. doi: 10.1080/19942060.2019.1627676
  • Hoheisel, H. (1997). Aerodynamic aspects of engine-aircraft integration of transport aircraft. Aerospace Science and Technology, 1(7), 475–487. doi: 10.1016/S1270-9638(97)90009-2
  • Kellari, D., Crawley, E. F., & Cameron, B. G. (2017). Influence of technology trends on future aircraft architecture. Journal of Aircraft, 54(6), 2213–2227. doi: 10.2514/1.C034266
  • Kozakiewicz, A., & Frant, M. (2013). Analysis of the gust impact on inlet vortex formation of the fuselage-shielded inlet of a jet engine powered aircraft. Journal of Theoretical and Applied Mechanics, 51(4), 993–1002.
  • Lange, R. H. (1986). A review of advanced turboprop transport aircraft. Progress in Aerospace Sciences, 23(2), 151–166. doi: 10.1016/0376-0421(86)90003-5
  • Larkin, G., & Coates, G. (2017). A design analysis of vertical stabilisers for blended wing body aircraft. Aerospace Science and Technology, 64, 237–252. doi: 10.1016/j.ast.2017.02.001
  • Li, J., Gao, Z., Huang, J., & Zhao, K. (2013). Aerodynamic design optimization of nacelle/pylon position on an aircraft. Chinese Journal of Aeronautics, 26(4), 850–857. doi: 10.1016/j.cja.2013.04.052
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. doi: 10.2514/3.12149
  • Okonkwo, P., & Smith, H. (2016). Review of evolving trends in blended wing body aircraft design. Progress in Aerospace Sciences, 82, 1–23. doi: 10.1016/j.paerosci.2015.12.002
  • Oliveira, G., Trapp, L. G., & Puppin-Macedo, A. (2003). Engine-airframe integration methodology for regional jet aircrafts with underwing engines. 41st aerospace sciences meeting and exhibit.
  • Peacock, N. J., & Sadler, J. H. R. (1992). Advanced propulsion systems for large subsonic transports. Journal of Propulsion and Power, 8(3), 703–708. doi: 10.2514/3.23535
  • Plumley, R. W., & Zeune, C. (2017). Revolutionary configurations: Technology convergence point. 55th AIAA aerospace sciences meeting.
  • Reist, T. A., & Zingg, D. W. (2016). Aerodynamic design of blended wing-body and lifting-fuselage aircraft. 34th AIAA applied aerodynamic conference.
  • Ruiz-Calavera, L., Funes-Sebastian, D., & Perdones-Diaz, D. (2010). Powered model wind tunnel tests of a high-offset subsonic turboprop air intake. 46th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit.
  • Schuh, M. J., Garcia, J. A., Carter, M. B., Deere, K. A., Stremel, P. M., & Tompkins, D. (2016). NASA environmentally responsible aviation hybrid wing body flow-through nacelle wind tunnel CFD (Invited). 54th AIAA aerospace sciences meeting.
  • Stankowski, T. P., MacManus, D. G., Robinson, M., & Sheaf, C. T. (2017). Aerodynamic effects of propulsion integration for high bypass ratio engines. Journal of Aircraft, 54(6), 2270–2284. doi: 10.2514/1.C034150
  • Zhaoguang, T., Yingchun, C., & Jiangtao, S. (2014). Study of power influences to the wing-mounted civil aircraft aerodynamic characteristics. Journal of Aircraft, 51(2), 629–636. doi: 10.2514/1.C032356