2,188
Views
0
CrossRef citations to date
0
Altmetric
Articles

The numerical investigation on the rolling decoupling of a canard-controlled missile using the jet control system

, , &
Pages 1062-1077 | Received 15 Jun 2020, Accepted 13 Jul 2020, Published online: 13 Aug 2020

References

  • Akbarian, E., Najafi, B., Jafari, M., Ardabili, S. F., Shamshirband, S., & Chau, K. (2018). Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine. Engineering Applications of Computational Fluid Mechanics, 12(1), 517–534. https://doi.org/10.1080/19942060.2018.1472670
  • Blair Jr, A. B. (1985). Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system ( NASA-TP-2401). NASA Langley Research Center.
  • Blair, A.B. (1978). An experimental wind-tunnel investigation of a ram-air-spoiler roll-control device on a forward-control missile at supersonic speeds. NASA Langley Research Center. NASA-TP-1353.
  • Blair Jr, A. B., Allen, J. M., & Hernandez, G. (1983). Effect of tail-fin span on stability and control characteristics of a canard-controlled missile at supersonic Mach numbers ( NASA Technical Paper 2157). Langley Research Center.
  • Burt, J. R. (1976). The effectiveness of canards for roll control ( RD-77-8). US Army Missile Command.
  • Chen, X. Y., Wang, B., Zhu, L. D., & Li, Y. L. (2018). Numerical study on surface distributed vortex-induced force on a flat-steel-box girder. Engineering Applications of Computational Fluid Mechanics, 12(1), 41–56. https://doi.org/10.1080/19942060.2017.1337593
  • Farzaneh-Gord, M., Faramarzi, M., Ahmadi, M. H., Sadi, M., Shamshirband, S., Mosavi, A., & Chau, K. (2019). Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. Engineering Applications of Computational Fluid Mechanics, 13(1), 642–663. https://doi.org/10.1080/19942060.2019.1624197
  • Ghalandari, M., Koohshahi, E. M., Mohamadian, F., Shamshirband, S., & Chau, K. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264. https://doi.org/10.1080/19942060.2019.1578696
  • Hardy, S. R. (1977). Subsonic wind tunnel tests of a canard-control missile configuration in pure rolling motion ( NSWC/DL-TR-3615). Naval Surface Weapons Center Dahlgren Lab.
  • Huh, J., & Lee, S. (2018). Numerical study on lateral jet interaction in supersonic crossflows. Aerospace Science and Technology, 80, 315–328. https://doi.org/10.1016/j.ast.2018.07.022
  • Kang, K. T., Lee, E., & Lee, S. (2015). Numerical investigation o df jet interaction for missile with continuous type side jet thruster. International Journal of Aeronautical and Space Sciences, 16(2), 148–156. https://doi.org/10.5139/IJASS.2015.16.2.148
  • Kislovskiy, V. A., & Zvegintsev, V. I. (2016, October). Study of changes in the aerodynamic characteristics of the axisymmetric supersonic vehicle in case of gas blowing from the lateral surface. AIP conference proceedings (vol. 1770, no. 1, p. 030013). AIP Publishing LLC. https://doi.org/10.1063/1.4963955.
  • Lesieutre, D. J. (2017, June). Prediction of Sparrow missile aerodynamic characteristics with a nonlinear engineering level missile prediction method. 35th AIAA applied aerodynamics conference, Denver, CO.
  • Lesieutre, D. J., Love, J. F., & Dillenius, M. F. E. (2002, August). Prediction of the nonlinear aerodynamic characteristics of tandem-control and rolling-tail missiles. AIAA Atmospheric flight mechanics Conference and Exhibit, Monterey, CA.
  • Lesieutre, D. J., Mendenhall, M. R., & Dillenius, M. F. E. (1988, January). Prediction of induced roll on conventional missiles with cruciform fin sections. 26th AIAA aerospace sciences meeting, Reno, NV.
  • Li, Z., Wang, H., & Chen, J. (2018). Ground effects on the hypervelocity jet flow and the stability of projectile. Engineering Applications of Computational Fluid Mechanics, 12(1), 375–384. https://doi.org/10.1080/19942060.2018.1445034
  • Li, L.-F., Wang, J.-F., Zhao, F.-M., & Wang, Y.-H. (2018). Numerical study of interaction between jet with rudders on slender body at hypersonic condition. Modern Physics Letters B, 32(12n13), 1840019. https://doi.org/10.1142/S0217984918400195
  • McDaniel, M. A., Evans, C., & Lesieutre, D. J. (2010, July). The effect of tail fin parameters on the induced roll of a canard-controlled missile. 28th AIAA applied aerodynamics conference, Chicago, IL.
  • Mirzaei, M. (2018). Roll reversal phenomenon control in flight vehicles. Aerospace Science and Technology, 79, 413–425. https://doi.org/10.1016/j.ast.2018.05.059
  • Morote, J. (2005). Lateral motion of free-rolling tail rockets in free flight. Journal of Spacecraft and Rockets, 42(5), 873–882. https://doi.org/10.2514/1.13531
  • Salih, S. Q., Aldlemy, M. S., Rasani, M. R., Ariffin, A. K., Ya, T. M., Alansari, N., Yaseen, Z. F., & Chau, K. (2019). Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method. Engineering Applications of Computational Fluid Mechanics, 13(1), 860–877. https://doi.org/10.1080/19942060.2019.1652209
  • Schmid, S., Lutz, T., & Krämer, E. (2009). Impact of modelling approaches on the prediction of ground effect aerodynamics. Engineering Applications of Computational Fluid Mechanics, 3(3), 419–429. https://doi.org/10.1080/19942060.2009.11015280
  • Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z. G., & Zhu, J. (1995). A New k−ε Eddy viscosity model for high Reynolds number turbulence flows. Computers & Fluids, 24(3), 227–238. https://doi.org/10.1016/0045-7930(94)00032-T
  • Silton, S. I., & Coyle, C. J. (2015, June). Effect of canard deflection for pitch and yaw on fin performance of a fin-stabilized projectile. 33rd AIAA applied aerodynamics conference, Dallas, TX.
  • Silton, S. I., & Coyle, C. J. (2016, January). Effect of canard deflection for roll control on fin performance of a fin-stabilized projectile. 54th AIAA aerospace sciences meeting, San Diego, CA.
  • Silton, S. I., & Fresconi, F. (2015). Effect of canard interactions on aerodynamic performance of a fin-stabilized projectile. Journal of Spacecraft and Rockets, 52(5), 1430–1442. https://doi.org/10.2514/1.A33219
  • Spalart, P. R., & Allmaras, S. R. (1992, January). Aone-equation turbulence mode for aerodynamic flows. 30thaerospace sciences meeting & exhibit, Reno, NV.
  • Spirito, J. D., Vaughn, M. E., & Washington, W. D. (2003). Numerical investigation of canard-controlled missile with planar and grid fins. Journal of Spacecraft and Rockets, 40(3), 363–370. https://doi.org/10.2514/2.3971
  • Stahl, B., Emunds, H., & Gülhan, A. (2009). Experimental investigation of hot and cold side jet interaction with a supersonic cross-flow. Aerospace Science and Technology, 13(8), 488–496. https://doi.org/10.1016/j.ast.2009.08.002
  • Stahl, B., Esch, H., & Gülhan, A. (2008). Experimental investigation of side jet interaction with a supersonic cross flow. Aerospace Science and Technology, 12(4), 269–275. https://doi.org/10.1016/j.ast.2007.01.009
  • Yin, J., Wu, X., & Lei, J. (2017). Body-fin interference on the Magnus effect of spinning projectile in supersonic flows. Engineering Applications of Computational Fluid Mechanics, 11(1), 496–512. https://doi.org/10.1080/19942060.2017.1319878