1,494
Views
4
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis on the flow field structure and deflection characteristics of water jets under nozzle moving conditions

ORCID Icon, , , &
Pages 1279-1301 | Received 21 May 2020, Accepted 07 Sep 2020, Published online: 01 Oct 2020

References

  • Arote, A., Bade, M., & Banerjee, J. (2019). Numerical investigations on stability of the spatially oscillating planar two-phase liquid jet in a quiescent atmosphere. Physics of Fluids, 31(11), Article 112103. doi: 10.1063/1.5123762
  • Bush, W. B., & Krishnamurthy, L. (1991). Asymptotic analysis of the fully developed region of an incompressible, free, turbulent, round jet. Journal of Fluid Mechanics, 223(-1), 93–111. doi: 10.1017/S0022112091001350
  • Chang, X. K., Chai, J. R., Liu, Z., Qin, Y., & Xu, Z. G. (2020). Comparison of ventilation methods used during tunnel construction. Engineering Applications of Computational Fluid Mechanics, 14(1), 107–121. doi: 10.1080/19942060.2019.1686427
  • Chen, X. C., Deng, S. S., Guan, J. F., Chen, M., & Chen, Y. (2018). Characteristics and generation mechanism of metal damage morphology by abrasive water jet erosion. Tribology, 38(1), 8–16.
  • Chi, H. P., Li, G. S., Liao, H. L., Tian, S. C., & Song, X. Z. (2016). Effects of parameters of self-propelled multi-orifice nozzle on drilling capability of water jet drilling technology. International Journal of Rock Mechanics and Mining Sciences, 86, 23–28. doi: 10.1016/j.ijrmms.2016.03.017
  • Dong, Z. Y. (1997). Impinging jet. China Ocean Press, 30–46.
  • Faizollahzadeh Ardabili, S., Najafi, B., Shamshirband, S., Minaei Bidgoli, B., Deo, R. C., & Chau, K. (2018). Computational intelligence approach for modeling hydrogen production: A review. Engineering Applications of Computational Fluid Mechanics, 12(1), 438–458. doi: 10.1080/19942060.2018.1452296
  • Ge, Z. L., Wang, L., Wang, M., Zhou, Z., Xiao, S. Q., & Zhao, H. Y. (2019). Rock-breaking properties under the rotatory impact of water jets in water jet drilling. Applied Sciences, 9(24), Article 5417. doi: 10.3390/app9245417
  • Ghalandari, M., Mirzadeh Koohshahi, E., Mohamadian, F., Shamshirband, S., & Wing Chau, K. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264. doi: 10.1080/19942060.2019.1578696
  • Guha, A., Barron, R. M., & Balachandar, R. (2011). An experimental and numerical study of water jet cleaning process. Journal of Materials Processing Technology, 211(4), 610–618. doi: 10.1016/j.jmatprotec.2010.11.017
  • Han, Q. L., & Ma, Y. (2016). Influence of nozzle structure on high pressure water jet and optimization design of nozzle structure parameter. Journal of National University of Defense Technology, 38(3), 68–74.
  • Huang, Z. H., & Xie, Y. (2011). Research on structure parameters of conical nozzle. Journal of Machine Design, 28(12), 62–64.
  • Hussein, H. J., Capp, S. T., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258, 31–75. doi: 10.1017/S002211209400323X
  • Kim, J. G., & Song, J. J. (2015). Abrasive water jet cutting methods for reducing blast-induced ground vibration in tunnel excavation. International Journal of Rock Mechanics and Mining Sciences, 75, 147–158. doi: 10.1016/j.ijrmms.2014.12.011
  • Li, D. Q. (2016). A new technology for the drilling of long boreholes for gas drainage in a soft coal seam. Journal of Petroleum Science and Engineering, 137, 107–112. doi: 10.1016/j.petrol.2015.11.015
  • Li, J. B., Li, G. S., Huang, Z. W., Song, X. Z., Yang, R. Y., & Peng, K. W. (2015). The self-propelled force model of a multi-orifice nozzle for radial jet drilling. Journal of Natural Gas Science and Engineering, 24, 441–448. doi: 10.1016/j.jngse.2015.04.009
  • Li, X. H., Lu, Y. Y., & Xiang, W. Y. (2007). Water jet theory and its application in mining engineering. Chongqing University Press.
  • Liao, H. L., Jia, X., Niu, J. L., Shi, Y. C., Gu, H. C., & Xu, J. F. (2020). Flow structure and rock-breaking feature of the self-rotating nozzle for radial jet drilling. Petroleum Science, 17(1), 211–221. doi: 10.1007/s12182-019-00378-0
  • Liao, H. L., Zhao, S. L., Cao, Y. F., Zhang, L., Yi, C., Niu, J. L., & Zhu, L. H. (2020). Erosion characteristics and mechanism of the self-resonating cavitating jet impacting aluminum specimens under the confining pressure conditions. Journal of Hydrodynamics, 32(2), 375–384. doi: 10.1007/s42241-020-0024-2
  • Liu, S. Y., Ji, H. F., Han, D. D., & Guo, C. W. (2018). Experimental investigation and application on the cutting performance of cutting head for rock cutting assisted with multi-water jets. The International Journal of Advanced Manufacturing Technology, 94(5–8), 2715–2728. doi: 10.1007/s00170-017-1072-9
  • Liu, X. H., Liu, S. Y., & Ji, H. F. (2015). Numerical research on rock breaking performance of water jet based on SPH. Powder Technology, 286, 181–192. doi: 10.1016/j.powtec.2015.07.044
  • Liu, B., Pan, Y., & Ma, F. (2020). Pulse pressure loading and erosion pattern of cavitating jet. Engineering Applications of Computational Fluid Mechanics, 14(1), 136–150. doi: 10.1080/19942060.2019.1695675
  • Liu, Y., Zhang, J., Wei, J. P., & Liu, X. T. (2020). Optimum structure of a laval nozzle for an abrasive air jet based on nozzle pressure ratio. Powder Technology, 364, 343–362. doi: 10.1016/j.powtec.2020.01.086
  • Lu, Y. Y., Huang, F., Liu, X. C., & Ao, X. (2015). On the failure pattern of sandstone impacted by high-velocity water jet. International Journal of Impact Engineering, 76, 67–74. doi: 10.1016/j.ijimpeng.2014.09.008
  • Lu, Y. Y., Tang, J. R., Ge, Z. L., Xia, B. W., & Liu, Y. (2013). Hard rock drilling technique with abrasive water jet assistance. International Journal of Rock Mechanics and Mining Sciences, 60, 47–56. doi: 10.1016/j.ijrmms.2012.12.021
  • Lu, Y. Y., Xiao, S. Q., Ge, Z. L., Zhou, Z., Ling, Y. F., & Lei, W. (2019). Experimental study on rock-breaking performance of water jets generated by self-rotatory bit and rock failure mechanism. Powder Technology, 346, 203–216. doi: 10.1016/j.powtec.2019.01.078
  • Martin, J., Tobias, R., & Philipp, R. (2013). Numerical analysis of penetration lengths in submerged supercritical water jets. The Journal of Supercritical Fluids, 82, 213–220. doi: 10.1016/j.supflu.2013.07.017
  • Mostofa, M. G., Kil, K. Y., & Hwan, A. J. (2010). Computational fluid analysis of abrasive waterjet cutting head. Journal of Mechanical Science and Technology, 24(1), 249–252. doi: 10.1007/s12206-009-1142-5
  • Peng, H. J., & Zhang, P. (2018). Numerical simulation of high-speed rotating water jet flow field in a semi enclosed vacuum chamber. CMES-Computer Modeling in Engineering & Sciences, 114(1), 59–73.
  • Raj, P., Hloch, S., Tripathi, R., Srivastava, M., Nag, A., Klichova, D., Klich, J., Hromasova, M., Muller, M., & Miloslav, L. J. J. O. M. P. (2019). Investigation of sandstone erosion by continuous and pulsed water jets. Journal of Manufacturing Processes, 42, 121–130. doi: 10.1016/j.jmapro.2019.04.035
  • Ramezanizadeh, M., Alhuyi Nazari, M., Ahmadi, M. H., & Chau, K. (2019). Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Engineering Applications of Computational Fluid Mechanics, 13(1), 40–47. doi: 10.1080/19942060.2018.1518272
  • Wang, W. (2016). Coal breakage impact by high pressure rotary water jet and induced pressure relief and permeability enhancement by hydraulic flushing cavity: Mechanism and application. Doctoral dissertation, China University of Mining and Technology.
  • Wu, X. G., Huang, Z. W., Dai, X., Mclennan, W., Zhang, S., & Li, R. (2020). Detached eddy simulation of the flow field and heat transfer in cryogenic nitrogen jet. International Journal of Heat and Mass Transfer, 150, Article 119275. doi: 10.1016/j.ijheatmasstransfer.2019.119275
  • Yuan, B. (2014). Research on the flow characteristics of high-pressure jet grouting and tis application. Doctoral dissertation, Wuhan University.
  • Yuan, L., Lin, B. Q., & Yang, W. (2015). Research progress and development direction of gas control with mine hydraulic technology in China coal mine. Coal Science and Technology, 43(1), 45–49.
  • Zhang, Y. Y., Liu, Y. W., Xu, Y. J., & Ren, J. H. (2011). Drilling characteristics of combinations of different high pressure jet nozzles. Journal of Hydrodynamics, 23(3), 384–390. doi: 10.1016/S1001-6058(10)60127-8
  • Zhang, X. W., Lu, Y. Y., Zhou, Z., & Tang, J. R. (2016). Vortex characteristics of submerged abrasive jet with large eddy simulation. Journal of Vibration and Shock, 35(19), 1–6.
  • Zhang, X. W., Tang, J. R., Lu, Y. Y., Zhou, Z., Zhang, W. F., & Chen, Y. T. (2015). Large eddy simulation and experimental study on vortex characteristic of water jet in submerged condition. Journal of China University of Petroleum, 39(3), 98–104.