1,389
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of water based binary composite nanofluids on thermal performance of solar thermal technologies: sustainability assessments

, , , , , , , , ORCID Icon & show all
Article: 2159881 | Received 24 Aug 2022, Accepted 14 Dec 2022, Published online: 24 Jan 2023

References

  • Akbarinia, A., & Behzadmehr, A. (2007). Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes. Applied Thermal Engineering, 27, 1327–1337. https://doi.org/10.1016/j.applthermaleng.2006.10.034
  • Akram, N., Montazer, E., Kazi, S. N., Soudagar, M. E. M., Ahmed, W., Zubir, M. N. M., Afzal, A., Muhammad, M. R., Ali, H. M., & Márquez, F. P. G. (2021). Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy, 227, 120452. https://doi.org/10.1016/j.energy.2021.120452
  • Akram, N., Sadri, R., Kazi, S. N., Zubir, M. N. M., Ridha, M., Ahmed, W., Soudagar, M. E. M., & Arzpeyma, M. (2020). A comprehensive review on nanofluid operated solar flat plate collectors. Journal of Thermal Analysis and Calorimetry, 139, 1309–1343. https://doi.org/10.1007/s10973-019-08514-z
  • Alawi, O. A., Kamar, H. M., Abdelrazek, A. H., Mallah, A. R., Mohammed, H. A., Abdulla, A. I., Gatea, H. A., Khiadani, M., Kazi, S. N., & Yaseen, Z. M. (2022). Hydrothermal and energy analysis of flat plate solar collector using copper oxide nanomaterials with different morphologies: Economic performance. Sustainable Energy Technologies and Assessments, 49, 101772. https://doi.org/10.1016/j.seta.2021.101772
  • Alawi, O. A., Kamar, H. M., Mallah, A. R., Mohammed, H. A., Kazi, S. N., Sidik, N. A. C., & Najafi, G. (2021). Nanofluids for flat plate solar collectors: Fundamentals and applications. Journal of Cleaner Production, 291, 125725. https://doi.org/10.1016/j.jclepro.2020.125725
  • Alawi, O. A., Kamar, H. M., Mallah, A. R., Mohammed, H. A., Sabrudin, M. A. S., Salim Newaz, K. M., Najafi, G., & Yaseen, Z. M. (2021). Experimental and theoretical analysis of energy efficiency in a flat plate solar collector using monolayer graphene nanofluids. Sustainability, 13(10), 5416. https://doi.org/10.3390/su13105416.
  • Alrowaili, Z. A., Ezzeldien, M., Shaaalan, N. M., Hussein, E., & Sharafeldin, M. A. (2022). Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system. Journal of Energy Storage, 50, 104675. https://doi.org/10.1016/j.est.2022.104675
  • Balla, H. H., Abdullah, S., MohdFaizal, W., Zulkifli, R., & Sopian, K. (2013). Numerical study of the enhancement of heat transfer for hybrid CuO-Cu nanofluids flowing in a circular pipe. Journal of Oleo Science, 62(7), 533–539. https://doi.org/10.5650/jos.62.533
  • Bezaatpour, M., & Rostamzadeh, H. (2021). Simultaneous energy storage enhancement and pressure drop reduction in flat plate solar collectors using rotary pipes with nanofluid. Energy and Buildings, 239, 110855. https://doi.org/10.1016/j.enbuild.2021.110855
  • Bianco, V., Manca, O., & Nardini, S. (2014). Entropy generation analysis of turbulent convection flow of Al2O3–water nanofluid in a circular tube subjected to constant wall heat flux. Energy Conversion and Management, 77, 306–314. https://doi.org/10.1016/j.enconman.2013.09.049
  • Cerón, J. F., Pérez-García, J., Solano, J. P., García, A., & Herrero-Martín, R. (2015). A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms. Applied Energy, 140, 275–287. https://doi.org/10.1016/j.apenergy.2014.11.069
  • Charjouei Moghadam, M., Edalatpour, M., & Solano, J. P. (2017). Numerical study on conjugated laminar mixed convection of alumina/water nanofluid flow, heat transfer, and entropy generation within a tube-on-sheet flat plate solar collector. Journal of Solar Energy Engineering, 139(4), 041011. https://doi.org/10.1115/1.4036854.
  • Edalatpour, M., & Solano, J. P. (2017). Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: Effects of nanofluids and mixed convection. International Journal of Thermal Sciences, 118, 397–409. https://doi.org/10.1016/j.ijthermalsci.2017.05.004
  • Elcioglu, E. B., Genc, A. M., Karadeniz, Z. H., Ezan, M. A., & Turgut, A. (2020). Nanofluid figure-of-merits to assess thermal efficiency of a flat plate solar collector. Energy Conversion and Management, 204, 112292. https://doi.org/10.1016/j.enconman.2019.112292
  • Farajzadeh, E., Movahed, S., & Hosseini, R. (2018). Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector. Renewable Energy, 118, 122–130. https://doi.org/10.1016/j.renene.2017.10.102
  • Gupta, M., Singh, V., Kumar, R., & Said, Z. (2017). A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews, 74, 638–670. https://doi.org/10.1016/j.rser.2017.02.073
  • Gupta, M., Singh, V., Kumar, S., Kumar, S., Dilbaghi, N., & Said, Z. (2018). Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. Journal of Cleaner Production, 190, 169–192. https://doi.org/10.1016/j.jclepro.2018.04.146
  • Hemmat Esfe, M., Arani, A. A. A., Rezaie, M., Yan, W. M., & Karimipour, A. (2015). Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. International Communications in Heat and Mass Transfer. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003
  • Hussein, O. A., Habib, K., Muhsan, A. S., Saidur, R., Alawi, O. A., & Ibrahim, T. K. (2020). Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Solar Energy, 204, 208–222. https://doi.org/10.1016/j.solener.2020.04.034
  • Khetib, Y., Alzaed, A., Tahmasebi, A., Sharifpur, M., & Cheraghian, G. (2022). Influence of using innovative turbulators on the exergy and energy efficacy of flat plate solar collector with DWCNTs-TiO2/water nanofluid. Sustainable Energy Technologies and Assessments, 51, 101855. https://doi.org/10.1016/j.seta.2021.101855
  • Kumar, L. H., Kazi, S. N., Masjuki, H. H., Zubir, M. N. M., Jahan, A., & Bhinitha, C. (2021). Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets. Applied Thermal Engineering, 192, 116916. https://doi.org/10.1016/j.applthermaleng.2021.116916
  • Liu, S., Afan, H. A., Aldlemy, M. S., Al-Ansari, N., & Yaseen, Z. M. (2020). Energy analysis using carbon and metallic oxides-based nanomaterials inside a solar collector. Energy Reports, 6, 1373–1381. https://doi.org/10.1016/j.egyr.2020.05.015
  • Lomascolo, M., Colangelo, G., Milanese, M., & De Risi, A. (2015). Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews, 43, 1182–1198. https://doi.org/10.1016/j.rser.2014.11.086
  • Mackolil, J., & Mahanthesh, B. (2021). Optimization of heat transfer in the thermal marangoni convective flow of a hybrid nanomaterial with sensitivity analysis. Applied Mathematics and Mechanics, 42(11), 1663–1674. https://doi.org/10.1007/s10483-021-2784-6
  • Mahanthesh, B. (2021a). Flow and heat transport of nanomaterial with quadratic radiative heat flux and aggregation kinematics of nanoparticles. International Communications in Heat and Mass Transfer, 127, 105521. https://doi.org/10.1016/j.icheatmasstransfer.2021.105521
  • Mahanthesh, B. (2021b). Quadratic radiation and quadratic boussinesq approximation on hybrid nanoliquid flow. In B. Mahanthesh (Ed.), Mathematical fluid mechanics advances in convective instabilities and incompressible fluid flow (pp. 13–54). De Gruyter. https://doi.org/10.1515/9783110696080
  • Maleki, A., Haghighi, A., & Mahariq, I. (2021). Machine learning-based approaches for modeling thermophysical properties of hybrid nanofluids: A comprehensive review. Journal of Molecular Liquids, 322, 114843. https://doi.org/10.1016/j.molliq.2020.114843
  • Minea, A. A. (2017). Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison. Renewable and Sustainable Energy Reviews, 71, 426–434.
  • Moravej, M., Bozorg, M. V., Guan, Y., Li, L. K. B., Doranehgard, M. H., Hong, K., & Xiong, Q. (2020). Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustainable Energy Technologies and Assessments, 40, 100783. https://doi.org/10.1016/j.seta.2020.100783
  • Mortazavinejad, S. M., & Mozafarifard, M. (2019). Numerical investigation of two-dimensional heat transfer of an absorbing plate of a flat-plate solar collector using dual-reciprocity method based on boundary element. Solar Energy, 191, 332–340. https://doi.org/10.1016/j.solener.2019.08.075
  • Okonkwo, E. C., Wole-Osho, I., Kavaz, D., Abid, M., & Al-Ansari, T. (2020). Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustainable Energy Technologies and Assessments, 37, 100636. https://doi.org/10.1016/j.seta.2020.100636.
  • Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151–170. https://doi.org/10.1080/08916159808946559
  • Ranga Babu, J. A., Kiran Kumar, K., & Srinivasa Rao, S. (2018). Thermodynamic analysis of hybrid nanofluid based solar flat plate collector. World Journal of Engineering, 15(1), 27–39. https://doi.org/10.1108/WJE-03-2017-0048
  • Sadri, R., Mallah, A. R., Hosseini, M., Ahmadi, G., Kazi, S. N., Dabbagh, A., Yeong, C. H., Ahmad, R., & Yaakup, N. A. (2018). CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: Comparison with experimental data. Journal of Molecular Liquids, 269, 152–159. https://doi.org/10.1016/j.molliq.2018.06.011
  • Said, Z., Sharma, P., Syam Sundar, L., Nguyen, V. G., Tran, V. D., & Le, V. V. (2022). Using Bayesian optimization and ensemble boosted regression trees for optimizing thermal performance of solar flat plate collector under thermosyphon condition employing MWCNT-Fe3O4/water hybrid nanofluids. Sustainable Energy Technologies and Assessments, 53, 102708. https://doi.org/10.1016/j.seta.2022.102708
  • Sarsam, W. S., Kazi, S. N., & Badarudin, A. (2015). A review of studies on using nanofluids in flat-plate solar collectors. Solar Energy, 122, 1245–1265. https://doi.org/10.1016/j.solener.2015.10.032
  • Sarsam, W. S., Kazi, S. N., & Badarudin, A. (2020). Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas. Applied Thermal Engineering, 172, 115142. https://doi.org/10.1016/j.applthermaleng.2020.115142
  • Sarsam, W. S., Kazi, S. N., & Badarudin, A. (2022). Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of multi-walled carbon nanotubes with different outside diameters. Experimental Heat Transfer, 35(3), 258–281. https://doi.org/10.1080/08916152.2020.1847215
  • Shah, T. R., & Ali, H. M. (2019). Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Solar Energy, 183, 173–203. https://doi.org/10.1016/j.solener.2019.03.012
  • Sheikholeslami, M., Farshad, S. A., Ebrahimpour, Z., & Said, Z. (2021). Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review. Journal of Cleaner Production, 293, 126119. https://doi.org/10.1016/j.jclepro.2021.126119
  • Singh, V. V., Thakur, J., Agarwal, R., Vyas, G., & Dondapati, R. S. (2018). Computational evaluation of thermal and hydraulic characteristics of flat-plate solar collector for different glazing material. Materials Today: Proceedings, 5(14), 28211–28220. https://doi.org/10.1016/j.matpr.2018.10.065
  • Sundar, L. S., Misganaw, A. H., Singh, M. K., Sousa, A. C. M., & Ali, H. M. (2021). Efficiency analysis of thermosyphon solar flat plate collector with low mass concentrations of ND–Co3O4 hybrid nanofluids: An experimental study. Journal of Thermal Analysis and Calorimetry, 143(2), 959–972. https://doi.org/10.1007/s10973-020-10176-1
  • Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2011). Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1–3), 41–48. https://doi.org/10.1016/j.colsurfa.2011.08.005
  • Thriveni, K., & Mahanthesh, B. (2021). Sensitivity computation of nonlinear convective heat transfer in hybrid nanomaterial between two concentric cylinders with irregular heat sources. International Communications in Heat and Mass Transfer, 129, 105677. https://doi.org/10.1016/j.icheatmasstransfer.2021.105677
  • Tiwar, A. K., Kumar, V., Said, Z., & Paliwal, H. K. (2021). A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook. Journal of Cleaner Production, 292, 126031. https://doi.org/10.1016/j.jclepro.2021.126031
  • Tong, Y., Hoseong, W. K., & Cho, H. (2019). Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Applied Thermal Engineering, 159, 113959. https://doi.org/10.1016/j.applthermaleng.2019.113959
  • Vatani, A., & Mohammed, H. A. (2013). Turbulent nanofluid flow over periodic rib-grooved channels. Engineering Applications of Computational Fluid Mechanics, 7(3), 369–381. https://doi.org/10.1080/19942060.2013.11015478
  • Verma, S. K., Tiwari, A. K., Tiwari, S., & Chauhan, D. S. (2018). Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Solar Energy, 167, 231–241. https://doi.org/10.1016/j.solener.2018.04.017
  • Visa, I., Moldovan, M., & Duta, A. (2019). Novel triangle flat plate solar thermal collector for facades integration. Renewable Energy, 143, 252–262. https://doi.org/10.1016/j.renene.2019.05.021
  • Xiong, Q., Tayebi, T., Izadi, M., Siddiqui, A. A., Ambreen, T., & Li, L. K. B. (2021). Numerical analysis of porous flat plate solar collector under thermal radiation and hybrid nanoparticles using two-phase model. Sustainable Energy Technologies and Assessments, 47, 101404. https://doi.org/10.1016/j.seta.2021.101404
  • Zayed, M. E., Zhao, J., Du, Y., Kabeel, A. E., & Shalaby, S. M. (2019). Factors affecting the thermal performance of the flat plate solar collector using nanofluids: A review. Solar Energy, 182, 382–396. https://doi.org/10.1016/j.solener.2019.02.054
  • Zhou, L., Wang, Y., & Huang, Q. (2019). CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions. Renewable Energy, 138, 754–763. https://doi.org/10.1016/j.renene.2019.02.014