779
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of cavitation and shear in bellows pump: transient CFD modelling and high-speed visualization

, , &
Article: 2247474 | Received 25 May 2023, Accepted 05 Aug 2023, Published online: 19 Aug 2023

References

  • Al-Azawy, M. G., Turan, A., & Revell, A. (2016). Assessment of turbulence models for pulsatile flow inside a heart pump. Computer Methods in Biomechanics and Biomedical Engineering, 19(3), 271–285. https://doi.org/10.1080/10255842.2015.1015527
  • Alberto, M. B., Jesús Manuel, F. O., & Andrés, M. F. (2019). Numerical methodology for the CFD simulation of diaphragm volumetric pumps. International Journal of Mechanical Sciences, 150, 322–336. https://doi.org/10.1016/j.ijmecsci.2018.10.039
  • Ansys, I. (2020). ANSYS® fluent theory guide, release 2020 R2. Canonsburg.
  • Arndt, R. E. (2002). Cavitation in vortical flows. Annual Review of Fluid Mechanics, 34(1), 143–175. https://doi.org/10.1146/annurev.fluid.34.082301.114957
  • Baldwin, J. T., Deutsch, S., Geselowitz, D. B., & Tarbell, J. M. (1994). LDA measurements of mean velocity and reynolds stress fields within an artificial heart ventricle. Journal of Biomechanical Engineering, 116(2), 190–200. https://doi.org/10.1115/1.2895719
  • Baldwin, J. T., Tarbell, J. M., Deutsch, S., Geselowitz, D. B., & Rosenberg, G. (1988). Hot-film wall shear probe measurements inside a ventricular assist device. Journal of Biomechanical Engineering, 110(4), 326–333. https://doi.org/10.1115/1.3108449
  • Brennen, C. (2014). Cavitation and bubble dynamics. Cambridge University Press.
  • Campbell, R. L. (2010). Fluid-structure interaction and inverse design simulations for flexible turbomachinery [Unpublished doctoral dissertation]. Pennsylvania State University.
  • Celik, I. B., Ghia, U., Roache, P. J., & Freitas, C. J. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), Article 078001. https://doi.org/10.1115/1.2960953
  • Chang, F., Tanawade, S., & Singh, R. K. (2009). Effects of stress-induced particle agglomeration on defectivity during CMP of low-k dielectrics. Journal of the Electrochemical Society, 156(1), H39–H42. https://doi.org/10.1149/1.3005778
  • Chebli, R., Audebert, B., Zhang, G., & Coutier-Delgosha, O. (2021). Influence of the turbulence modeling on the simulation of unsteady cavitating flows. Computers & Fluids, 221, Article 104898. https://doi.org/10.1016/j.compfluid.2021.104898
  • Derakhshandeh, J. F., & Alam, M. M. (2019). A review of bluff body wakes. Ocean Engineering, 182, 475–488. https://doi.org/10.1016/j.oceaneng.2019.04.093
  • Dunbar, A. J., Craven, B. A., & Paterson, E. G. (2015). Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms. Ocean Engineering, 110, 98–105. https://doi.org/10.1016/j.oceaneng.2015.08.066
  • Frungieri, G., & Vanni, M. (2017). Shear-induced aggregation of colloidal particles: A comparison between two different approaches to the modelling of colloidal interactions. The Canadian Journal of Chemical Engineering, 95(9), 1768–1780. https://doi.org/10.1002/cjce.22843
  • Hu, X., Jiang, H., Ma, C., Duan, S., Wang, Y., Shi, J., Jin, H., Wang, Y., & Shen, S. (2022). Shear-induced aggregation and distribution in photocatalysis suspension system for hydrogen production. Industrial & Engineering Chemistry Research, 61(19), 6722–6732. https://doi.org/10.1021/acs.iecr.1c04822
  • Huang, B., Qiu, S., Li, X., Wu, Q., & Wang, G. (2019). A review of transient flow structure and unsteady mechanism of cavitating flow. Journal of Hydrodynamics, 31(3), 429–444. https://doi.org/10.1007/s42241-019-0050-0
  • Hui, Z., Shi, J., Zhou, L., Wei, X., & Sun, X. (2023). Effect of inclination angle on the film cooling in a serpentine nozzle with strong adverse pressure gradient. Physics of Fluids, 35(4), Article 046114. https://doi.org/10.1063/5.0147749
  • Iannetti, A., Stickland, M. T., & Dempster, W. M. (2015). An advanced CFD model to study the effect of non-condensable gas on cavitation in positive displacement pumps. Open Engineering, 5(1). https://doi.org/10.1515/eng-2015-0027
  • Kan, K., Zhao, F., Xu, H., Feng, J., Chen, H., & Liu, W. (2023). Energy performance evaluation of an axial-Flow pump as turbine under conventional and reverse operating modes based on an energy loss intensity model. Physics of Fluids, 35(1), Article 015125. https://doi.org/10.1063/5.0132667
  • Khanna, A. J., Chang, F., Gupta, S., Kumar, P., & Singh, R. K. (2019). Characterization of the nature of shear-induced agglomerates as hard and soft in chemical mechanical polishing slurries. Journal of Vacuum Science & Technology B, 37(1), Article 011207. https://doi.org/10.1116/1.5065516
  • Khanna, A. J., Gupta, S., Kumar, P., Chang, F., & Singh, R. K. (2018). Study of agglomeration behavior of chemical mechanical Polishing slurry under controlled shear environments. ECS Journal of Solid State Science and Technology, 7(5), 238–242. https://doi.org/10.1149/2.0091805jss
  • Khanna, A. J., Gupta, S., Kumar, P., Chang, F. C., & Singh, R. K. (2019). Quantification of shear induced agglomeration in chemical mechanical Polishing slurries under different chemical environments. Microelectronic Engineering, 210, 1–7. https://doi.org/10.1016/j.mee.2019.03.012
  • Kim, H. H., Rakibuzzaman, M., Kim, K., & Suh, S. H. (2019). Flow and fast Fourier transform analyses for tip clearance effect in an operating kaplan turbine. Energies, 12(2), 264. https://doi.org/10.3390/en12020264
  • Krisher, J. A., Malinauskas, R. A., & Day, S. W. (2022). The effect of blood viscosity on shear-induced hemolysis using a magnetically levitated shearing device. Artificial Organs, 46(6), 1027–1039. https://doi.org/10.1111/aor.14172
  • Lee, H., Tatsumi, E., & Taenaka, Y. (2008). Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: Using a monoleaflet valve. ASAIO Journal, 54(1), 25–30. https://doi.org/10.1097/MAT.0b013e318161d71c
  • Li, W., & Yu, Z. (2021). Cavitating flows of organic fluid with thermodynamic effect in a diaphragm pump for organic Rankine cycle systems. Energy, 237, Article 121495. https://doi.org/10.1016/j.energy.2021.121495
  • Lin, Z., Yang, F., Guo, J., Jian, H., Sun, S., & Jin, X. (2023). Leakage flow characteristics in blade tip of shaft tubular pump. Journal of Marine Science and Engineering, 11(6), 1139. https://doi.org/10.3390/jmse11061139
  • Litchy, M. R., Grant, D., & Schöb, R. (2007a). Effect of pump type on the health of various CMP slurries. Semiconductor Fabtech, 33, 53–59.
  • Litchy, M. R., Grant, D. C., & Schöb, R. (2007b). Effects of shear and cavitation on particle agglomeration during handling of cmp slurries containing silica, Alumina, and Ceria particles. In Proceedings of the 12th international CMP-MIC conference (pp. 366–375).
  • Liu, C., Wang, Y., Yang, Y., & Duan, Z. (2016). New omega vortex identification method. Science China Physics, Mechanics & Astronomy, 59(8), Article 684711. https://doi.org/10.1007/s11433-016-0022-6
  • Liu, G., Liu, Y., Niu, X., Zhang, W., Wang, C., Yang, S., & Ma, T. (2018). Effects of large particles on MRR, WIWNU and surface quality in TEOS chemical mechanical Polishing based on FA/O alkaline slurry. ECS Journal of Solid State Science and Technology, 7(11), 624–633. https://doi.org/10.1149/2.0101811jss
  • Liu, Y., Xie, N., Tang, Y., & Zhang, Y. (2022). Investigation of hemocompatibility and vortical structures for a centrifugal blood pump based on large-Eddy simulation. Physics of Fluids, 34(11), Article 115111. https://doi.org/10.1063/5.0117492
  • Long, Y., Han, H., Ji, B., & Long, X. (2022). Numerical investigation of the influence of vortex generator on propeller cavitation and hull pressure fluctuation by DDES. Journal of Hydrodynamics, 34(3), 444–450. https://doi.org/10.1007/s42241-022-0032-5
  • Lu, J., Caimi, S., Erfle, P., Wu, B., Cingolani, A., Luo, Y., Wu, H., & Morbidelli, M. (2019). Aggregation of stable colloidal dispersion under short high-shear microfluidic conditions. Chemical Engineering Journal, 378, Article 122225. https://doi.org/10.1016/j.cej.2019.122225
  • Lu, L., Wang, J., Li, M., & Ryu, S. (2022). Experimental and numerical analysis on vortex cavitation morphological characteristics in U-Shape notch spool valve and the vortex cavitation coupled choked flow conditions. International Journal of Heat and Mass Transfer, 189, Article 122707. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122707
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  • Mitoh, A., Suebe, Y., Kashima, T., Koyabu, E., Sobu, E., Okamoto, E., Mitamura, Y., & Nishimura, I. (2020). Shear stress evaluation on blood cells using computational fluid dynamics. Bio-Medical Materials and Engineering, 31(3), 169–178. https://doi.org/10.3233/BME-201088
  • Obidowski, D., Reorowicz, P., Witkowski, D., Sobczak, K., & Jóźwik, K. (2018). Methods for determination of stagnation in pneumatic ventricular assist devices. The International Journal of Artificial Organs, 41(10), 653–663. https://doi.org/10.1177/0391398818790204
  • Opitz, K., Schade, O., & Schlücker, E. (2011). Cavitation in reciprocating positive displacement pumps. In Proceedings of the 27th international pump users symposium (pp. 27–33). Turbomachinery Laboratory, Texas A&M University.
  • Pan, X., Yang, S., Shi, Y., & Liu, Y. (2019). Investigation on the dynamic characteristics of port valves in a diaphragm pump for exhaust gas treatment system by FSI modeling. IEEE Access, 7, 57238–57250. https://doi.org/10.1109/ACCESS.2019.2914282
  • Rakibuzzaman, M., Kim, K., & Suh, S. (2018). Numerical and experimental investigation of cavitation flows in a multistage centrifugal pump. Journal of Mechanical Science and Technology, 32(3), 1071–1078. https://doi.org/10.1007/s12206-018-0209-6
  • Schnerr, G. H., & Sauer, J. (2001). Physical and numerical modeling of unsteady cavitation dynamics. In 4th international conference on multiphase flow.
  • Seo, Y., Park, J., & Elaiyaraju, P. (2014). Effects of pump-induced particle agglomeration during chemical mechanical planarization (CMP). In Proceedings of international conference on Planarization/CMP technology 2014 (pp. 254–258). IEEE. https://doi.org/10.1109/ICPT.2014.7017293.
  • Shahraki, Z. H., & Oscuii, H. N. (2014). Numerical investigation of three patterns of motion in an electromagnetic pulsatile VAD. ASAIO Journal, 60(3), 304–310. https://doi.org/10.1097/MAT.0000000000000051
  • Topper, S. R., Navitsky, M. A., Medvitz, R. B., Paterson, E. G., Siedlecki, C. A., Slattery, M. J., Deutsch, S., Rosenberg, G., & Manning, K. B. (2014). The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs. Cardiovascular Engineering and Technology, 5(1), 54–69. https://doi.org/10.1007/s13239-014-0174-x
  • Trivedi, C., Cervantes, M. J., Gandhi, B. K., & Dahlhaug, O. G. (2013). Experimental and numerical studies for a high head francis turbine at several operating points. Journal of Fluids Engineering, 135(Article 111102. https://doi.org/10.1115/1.4024805
  • Wu, S., & Wei, X. (2019). A new integrated numerical modeling approach toward piston diaphragm pump simulation: Three-dimensional model simplification and characteristic analysis. Advances in Mechanical Engineering, 11(6). https://doi.org/10.1177/1687814019845955
  • Wu, X. (2019). Nonlinear theories for shear flow instabilities: Physical insights and practical implications. Annual Review of Fluid Mechanics, 51(1), 451–485. https://doi.org/10.1146/annurev-fluid-122316-045252
  • Xu, Z., Yang, M., Wang, X., & Wang, Z. (2015). The influence of different operating conditions on the blood damage of a pulsatile ventricular assist device. ASAIO Journal, 61(6), 656–663. https://doi.org/10.1097/MAT.0000000000000261
  • Zant, P. V. (2014). Microchip fabrication: A practical guide to semiconductor processing. McGraw-Hill Education.