736
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical and experimental analysis of cavitation characteristics in safety valves of the nuclear power second circuit using a modified cavitation model

, , , , &
Article: 2251546 | Received 02 Jun 2023, Accepted 19 Aug 2023, Published online: 30 Aug 2023

References

  • Amirante, R., Distaso, E., & Tamburrano, P. (2014). Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Conversion and Management, 87, 208–219. https://doi.org/10.1016/j.enconman.2014.07.031
  • Asnaghi, A., Feymark, A., & Bensow, R. E. (2017). Improvement of cavitation mass transfer modeling based on local flow properties. International Journal of Multiphase Flow, 93, 142–157. https://doi.org/10.1016/j.ijmultiphaseflow.2017.04.005
  • Bayramov, A. N. (2023). Comprehensive assessment of system efficiency and competitiveness of nuclear power plants in combination with hydrogen complex. International Journal of Hydrogen Energy, 48(70), 27068–27078. https://doi.org/10.1016/j.ijhydene.2023.03.314
  • Bjerre, M., Eriksen, J. G. I., Andreasen, A., Stegelmann, C., & Mandø, M. (2017). Analysis of pressure safety valves for fire protection on offshore oil and gas installations. Process Safety and Environmental Protection, 105, 60–68. https://doi.org/10.1016/j.psep.2016.10.008
  • Chen, Y., Chen, X., Gong, Z., Li, J., & Lu, C. (2016). Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil. Applied Mathematical Modelling, 40(11–12), 5835–5857. https://doi.org/10.1016/j.apm.2016.01.031
  • Cheng, H., Long, X., Ji, B., Peng, X., & Farhat, M. (2021). A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas. International Journal of Multiphase Flow, 134, 103441. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103441
  • Elmisaoui, S., Benjelloun, S., Chkifa, M. A., & Latifi, A. M. (2023). Surrogate model based on hierarchical sparse polynomial interpolation for the phosphate ore dissolution. Computers & Chemical Engineering, 173, 108174. https://doi.org/10.1016/j.compchemeng.2023.108174
  • Gao, Z., Yue, Y., Wu, J., Li, J., Wu, H., & Jin, Z. (2021). The flow and cavitation characteristics of cage-type control valves. Engineering Applications of Computational Fluid Mechanics, 15(1), 951–963. https://doi.org/10.1080/19942060.2021.1932604
  • Geng, L., Chen, J., & Escaler, X. (2020). Improvement of cavitation mass transfer modeling by including Rayleigh–Plesset equation second order term. European Journal of Mechanics – B/Fluids, 84, 313–324. https://doi.org/10.1016/j.euromechflu.2020.05.008
  • Habibnejad, D., Akbarzadeh, P., Salavatipour, A., & Gheshmipour, V. (2022). Cavitation reduction in the globe valve using oblique perforated cages: A numerical investigation. Flow Measurement and Instrumentation, 83, 102110. https://doi.org/10.1016/j.flowmeasinst.2021.102110
  • He, J., Zhang, Y., Liu, X., Li, B., Sun, S., Peng, J., & Liu, W. (2023). Experiment and simulation study on cavitation flow in pressure relief valve at different hydraulic oil temperatures. Flow Measurement and Instrumentation, 89, 102289. https://doi.org/10.1016/j.flowmeasinst.2022.102289
  • Jena, S. K., Bose, S., & Patle, S. D. (2023). Comparison of the performance of propane (R290) and propene (R1270) as alternative refrigerants for cooling during expansion in a helical capillary tube: A CFD-based insight investigation. International Journal of Refrigeration, 146, 300–313. https://doi.org/10.1016/j.ijrefrig.2022.11.009
  • Jin, Z., Qiu, C., Jiang, C., Wu, J., & Qian, J. (2020). Effect of valve core shapes on cavitation flow through a sleeve regulating valve. Journal of Zhejiang University-Science A, 21(1), 1–14. https://doi.org/10.1631/jzus.A1900528
  • Kumagai, K., Ryu, S., Ota, M., & Maeno, K. (2016). Investigation of poppet valve vibration with cavitation. International Journal of Fluid Power, 17(1), 15–24. https://doi.org/10.1080/14399776.2015.1115648
  • Li, Q., Zong, C., Liu, F., Xue, T., Zhang, A., & Song, X. (2023a). Numerical and experimental analysis of the cavitation characteristics of orifice plates under high-pressure conditions based on a modified cavitation model. International Journal of Heat and Mass Transfer, 203, 123782. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123782
  • Li, Q., Zong, C., Liu, F., Zhang, A., Xue, T., Yu, X., & Song, X. (2023b). Numerical and experimental analysis of fluid force for nuclear valve. International Journal of Mechanical Sciences, 241, 107939. https://doi.org/10.1016/j.ijmecsci.2022.107939
  • Li, S., Aung, N. Z., Zhang, S., Cao, J., & Xue, X. (2013). Experimental and numerical investigation of cavitation phenomenon in flapper–nozzle pilot stage of an electrohydraulic servo-valve. Computers & Fluids, 88, 590–598. https://doi.org/10.1016/j.compfluid.2013.10.016
  • Liu, X., Wu, Z., Li, B., Zhao, J., He, J., Li, W., Chi, Z., & Fangwei, X. (2019). Influence of inlet pressure on cavitation characteristics in regulating valve. Engineering Applications of Computational Fluid Mechanics, 14(1), 299–310. https://doi.org/10.1080/19942060.2020.1711811
  • Liu, X., He, J., Li, B., Zhang, C., Xu, H., Li, W., & Xie, F., (2021). Study on Unsteady Cavitation Flow and Pressure Pulsation Characteristics in the Regulating Valve. Shock and Vibration, 2021. http://doi.org/10.1155/2021/6620087
  • Lu, L., Wang, J., Li, M., & Ryu, S. (2022). Experimental and numerical analysis on vortex cavitation morphological characteristics in u-shape notch spool valve and the vortex cavitation coupled choked flow conditions. International Journal of Heat and Mass Transfer, 189, 122707. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122707
  • MacLellan, D. G., Mitchell, A. E., & Turnbull, D. (1960). Flow characteristics of piston-type control valves. Proceedings of the symposium on recent mechanical engineering developments in automatrc control.
  • Martin, S., & Bhushan, B. (2014). Fluid flow analysis of a shark-inspired microstructure. Journal of Fluid Mechanics, 756, 5–29. https://doi.org/10.1017/jfm.2014.447
  • Mustafa, J., Abdullah, M. M., Ahmad, M. Z., Husain, S., & Sharifpur, M. (2023). Numerical study of two-phase turbulence nanofluid flow in a circular heatsink for cooling LEDs by changing their location and dimensions. Engineering Analysis with Boundary Elements, 149, 248–260. https://doi.org/10.1016/j.enganabound.2023.01.029
  • Nozawa, T. (2023). Considering agitation in ultrasonic electroplating through observation of cavitation. Ultrasonics Sonochemistry, 96, 106432. https://doi.org/10.1016/j.ultsonch.2023.106432
  • Oshima, S., & Ichikawa, T. (1985). Cavitation phenomena and performance of oil hydraulic poppet valve. Bulletin of JSME, 28(244), 2272–2279. https://doi.org/10.1299/jsme1958.28.2264
  • Pope, S. B. (2000). Turbulent flows. Cambridge university press.
  • Qian, J., Xu, J., Fang, L., Zhao, L., Wu, J., & Jin, Z. (2023). Effects of throttling windows on cavitation flow of sleeve control valve. Annals of Nuclear Energy, 189, 109841. https://doi.org/10.1016/j.anucene.2023.109841
  • Salvador, F. J., Jaramillo, D., Romero, J. V., & Roselló, M. D. (2017). Using a homogeneous equilibrium model for the study of the inner nozzle flow and cavitation pattern in convergent–divergent nozzles of diesel injectors. Journal of Computational and Applied Mathematics, 309, 630–641. https://doi.org/10.1016/j.cam.2016.04.010
  • Schnerr, G. H., & Sauer, J. (2001). Physical and numerical modeling of unsteady cavitation dynamics. 4th international conference on multiphase flow, 1(1), 1–12.
  • Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering-Transactions of the Asme, 124(3), 617–624. https://doi.org/10.1115/1.1486223
  • Snyder, T. A., Braun, M. J., & Pierson, K. C. (2016). Two-way coupled Reynolds and Rayleigh–Plesset equations for a fully transient, multiphysics cavitation model with pseudo-cavitation. Tribology International, 93, 429–445. https://doi.org/10.1016/j.triboint.2015.08.040
  • Soyama, H., & Hoshino, J. (2016). Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse. Aip Advances, 6(4), 45113. https://doi.org/10.1063/1.4947572
  • Sreedhar, B. K., Albert, S. K., & Pandit, A. B. (2017). Cavitation damage: Theory and measurements – A review. Wear, 372–373, 177–196. https://doi.org/10.1016/j.wear.2016.12.009
  • Sun, X., Liu, S., Zhang, X., Tao, Y., Boczkaj, G., Yoon, J. Y., & Xuan, X. (2022). Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. Bioresource Technology, 345, 126251. https://doi.org/10.1016/j.biortech.2021.126251
  • Tahmasebi, E., Lucchini, T., D’Errico, G., Onorati, A., & Hardy, G. (2017). An investigation of the validity of a homogeneous equilibrium model for different diesel injector nozzles and flow conditions. Energy Conversion and Management, 154, 46–55. https://doi.org/10.1016/j.enconman.2017.10.049
  • Valdés, J. R., Rodríguez, J. M., Monge, R., Peña, J. C., & Pütz, T. (2014). Numerical simulation and experimental validation of the cavitating flow through a ball check valve. Energy Conversion and Management, 78, 776–786. https://doi.org/10.1016/j.enconman.2013.11.038
  • Viitanen, V., Sipilä, T., Sánchez-Caja, A., & Siikonen, T. (2022). CFD predictions of unsteady cavitation for a marine propeller in oblique inflow. Ocean Engineering, 266, 112596. https://doi.org/10.1016/j.oceaneng.2022.112596
  • Wang, C., Duan, A., Xu, J., Liu, X., Jin, H., & Ou, G. (2021a). Cavitation failure analysis of 90-degree elbow of mixing point in ethylene glycol recovery and concentration system. Engineering Failure Analysis, 125, 105400. https://doi.org/10.1016/j.engfailanal.2021.105400
  • Wang, H., Xu, H., Pooneeth, V., & Gao, X. (2018). A novel one-camera-five-mirror three-dimensional imaging method for reconstructing the cavitation bubble cluster in a water hydraulic valve. Applied Sciences, 8(10), 1783. https://doi.org/10.3390/app8101783
  • Wang, Z., Cheng, H., & Ji, B. (2021b). Euler–Lagrange study of cavitating turbulent flow around a hydrofoil. Physics of Fluids, 33(11), 112108. https://doi.org/10.1063/5.0070312
  • Wang, Z., Cheng, H., Ji, B., & Peng, X. (2023). Numerical investigation of inner structure and its formation mechanism of cloud cavitating flow. International Journal of Multiphase Flow, 165, 104484. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104484
  • Webber, D. M. (2011). Generalising two-phase homogeneous equilibrium pipeline and jet models to the case of carbon dioxide. Journal of Loss Prevention in the Process Industries, 24(4), 356–360. https://doi.org/10.1016/j.jlp.2011.01.010
  • Yaghoubi, H., Madani, S. A. H., & Alizadeh, M. (2018). Numerical study on cavitation in a globe control valve withdifferent numbers of anti-cavitation trims. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 25(11), 2677–2687.
  • Yi, D., Lu, L., Zou, J., & Fu, X. (2015). Interactions between poppet vibration and cavitation in relief valve. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 229(8), 1447–1461. https://doi.org/10.1177/0954406214544304
  • Yuan, C., Song, J., Zhu, L., & Liu, M. (2019). Numerical investigation on cavitating jet inside a poppet valve with special emphasis on cavitation-vortex interaction. International Journal of Heat and Mass Transfer, 141, 1009–1024. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.105
  • Zhang, S., Pang, Y., Liang, P., & Song, X. (2022). On the ensemble of surrogate models by minimum screening index. Journal of Mechanical Design, 144(7), 71701–71707. https://doi.org/10.1115/1.4054243
  • Zong, C., Li, Q., Li, K., Song, X., Chen, D., Li, X., & Wang, X. (2022). Computational fluid dynamics analysis and extended adaptive hybrid functions model-based design optimization of an explosion-proof safety valve. Engineering Applications of Computational Fluid Mechanics, 16(1), 296–315. https://doi.org/10.1080/19942060.2021.2010602
  • Zwart, P. J., Gerber, A. G., & Belamri, T. (2004). A two-phase flow model for predicting cavitation dynamics. Proceeding of the 5th International Conference on Multiphase Flow, 152(1), 1–11.