402
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Interception performance of intake structures with a flow diversion barrier under supercritical flow conditions

Article: 2297540 | Received 25 Sep 2023, Accepted 17 Dec 2023, Published online: 02 Jan 2024

References

  • Alrdadi, R., & Meylan, M. H. (2022). Modelling water flow through railway ballast with random permeability and a free boundary. Applied Mathematical Modelling, 103, 36–50. https://doi.org/10.1016/j.apm.2021.10.018
  • Arega, F., Lam, M. Y., & Lee, J. H. (2019). Supercritical stormwater flow interception through bottom rack with transverse barrier. Journal of Irrigation and Drainage Engineering, 145(4), 05019002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001371
  • Brunella, S., Hager, W. H., & Minor, H. E. (2003). Hydraulics of bottom rack intake. Journal of Hydraulic Engineering, 129(1), 2–10. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:1(2)
  • Cancian Putton, V., Marson, C., Fiorotto, V., & Caroni, E. (2011). Supercritical flow over a dentated sill. Journal of Hydraulic Engineering, 137(9), 1019–1026.https://doi.org/10.1061/(ASCE)HY.1943-7900.0000407
  • Cano-Lozano, J. C., Bolaños-Jiménez, R., Gutiérrez-Montes, C., & Martínez-Bazán, C. (2015). The use of volume of fluid technique to analyze multiphase flows: Specific case of bubble rising in still liquids. Applied Mathematical Modelling, 39(12), 3290–3305. https://doi.org/10.1016/j.apm.2014.11.034
  • Chang, L. (2022). Effects of pipeline geometry, sample volume, and flow rate on pb monitoring outcomes in copper pipe drinking water supply systems. Water Research, 222, 118890. https://doi.org/10.1016/j.watres.2022.118890
  • Chang, L., & Wei, W. (2022a). Numerical investigation of the plunging and vortex-flow regimes occurring in drop shafts with a tangential intake. Journal of Irrigation and Drainage Engineering, 148(8), 04022026-1–10. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001692
  • Chang, L., & Wei, W. (2022b). Numerical study on the effect of tangential intake on vortex dropshaft assessment using pressure distributions. Engineering Applications of Computational Fluid Mechanics, 16(1), 1100–1110. https://doi.org/10.1080/19942060.2022.2072954
  • Chang, L., & Wei, W. (2023). Numerical study on the effect of tangential intake design and inflow discharge on vertical dropshaft assessment using pressure and velocity distributions. Engineering Applications of Computational Fluid Mechanics, 17(1), 2252045. https://doi.org/10.1080/19942060.2023.2252045
  • Demetiou, J. (2009). Inclined jumps over sills part 2 downstream geometry. Springer. Fluent, A., 2013. Ansys fluent theory guide 15.0. ANSYS, Canonsburg, PA 33.
  • Hager, W. H., Basler, B., & Wanoschek, R. (1986). Incipient jump condition for ventilated sill flow. Journal of Hydraulic Engineering, 112(10), 953–963. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:10(953)
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Kumar, S., Ahmad, Z., Kothyari, U. C., & Mittal, M. (2010). Discharge characteristics of a trench weir. Flow Measurement and Instrumentation, 21(2), 80–87. https://doi.org/10.1016/j.flowmeasinst.2010.01.002
  • Lee, T. C., Chan, K. Y., Chan, H. S., & Kok, M. H.. (2011). Projections of extreme rainfall in Hong Kong in the 21st century. Acta Meteorologica Sinica, 25(6), 691–709.
  • Ohtsu, I., Yasuda, Y., & Hashiba, H. (1996). Incipient jump conditions for flows over a vertical sill. Journal of Hydraulic Engineering, 122(8), 465–469. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:8(465)
  • Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic design of a usbr type ii stilling basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001150
  • Patankar, S. V. (2018). Numerical heat transfer and fluid flow. CRC press.
  • Qasim, R. M., Mohammed, A. A., & Abdulhussein, I. A. (2022). An investigating of the impact of Bed flume discordance on the weir-gate hydraulic structure. HighTech and Innovation Journal, 3(3), 341–355. https://doi.org/10.28991/HIJ-2022-03-03-09
  • Righetti, M., & Lanzoni, S. (2008). Experimental study of the flow field over bottom intake racks. Journal of Hydraulic Engineering, 134(1), 15–22. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(15)
  • Rodi, W. (2017). Turbulence models and their application in hydraulics: A state-of-the-art review. Routledge.
  • Shen, W., Wang, S., Zhang, X., & Liang, X. (2022). Large-eddy simulation and mathematical model of vortex breakdown and pressure drop in a cavity with tubeless vortex reducer. Engineering Applications of Computational Fluid Mechanics, 16(1), 1344–1363. https://doi.org/10.1080/19942060.2022.2091662
  • Subramanya, K. (2009). Flow in open channels. Tata McGraw-Hill Education.
  • Wei, W., & Chang, L. (2023). Analytical solutions for vortex flow at the tangential inlet of a vertical dropshaft. Physics of Fluids, 35(1), 015160.
  • Yakhot, V., Orszag, S., Thangam, S., Gatski, T., & Speziale, C. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510–1520. https://doi.org/10.1063/1.858424