1,616
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Delft3D model-based estuarine suspended sediment budget with morphodynamic changes of the channel-shoal complex in a mega fluvial-tidal delta

, , &
Article: 2300763 | Received 14 Nov 2023, Accepted 26 Dec 2023, Published online: 05 Jan 2024

References

  • Akter, J., Roelvink, D., & van der Wegen, M. (2021). Process-based modeling deriving a long-term sediment budget for the Ganges-Brahmaputra-meghna delta, Bangladesh. Estuarine, Coastal and Shelf Science, 260, 107509. https://doi.org/10.1016/j.ecss.2021.107509
  • Allison, M. A. (1998). Historical changes in the Ganges-Brahmaputra delta front. Journal of Coastal Research, 1269–1275.
  • Allison, M. A., Nittrouer, C. A., Ogston, A. S., Mullarney, J. C., & Nguyen, T. T. (2017). Sedimentation and survival of the Mekong Delta: A case study of decreased sediment supply and accelerating rates of relative sea level rise. Oceanography, 30(3), 98–109. https://doi.org/10.5670/oceanog.2017.318
  • Angamuthu, B., Darby, S. E., & Nicholls, R. J. (2018). Impacts of natural and human drivers on the multi-decadal morphological evolution of tidally-influenced deltas. Proceedings of the Royal Society A, 474(2219), 20180396. https://doi.org/10.1098/rspa.2018.0396
  • Anthony, E. J., Brunier, G., Besset, M., Goichot, M., Dussouillez, P., & Nguyen, V. L. (2015). Linking rapid erosion of the Mekong river delta to human activities. Scientific Reports, 5(1), 14745. https://doi.org/10.1038/srep14745
  • Anthony, E. J., Marriner, N., & Morhange, C. (2014). Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth-Science Reviews, 139, 336–361. https://doi.org/10.1016/j.earscirev.2014.10.003
  • Barrera Crespo, P. D., Mosselman, E., Giardino, A., Becker, A., Ottevanger, W., Nabi, M., & Arias-Hidalgo, M. (2019). Sediment budget analysis of the Guayas River using a process-based model. Hydrology and Earth System Sciences, 23(6), 2763–2778. https://doi.org/10.5194/hess-23-2763-2019
  • Becker, M., Papa, F., Karpytchev, M., Delebecque, C., Krien, Y., Khan, J. U., Ballu, V., Durand, F., Cozannet, G. L., Saiful Islam, A. K. M., Calmant, S., & Shum, C. K. (2020). Water level changes, subsidence, and sea level rise in the Ganges-Brahmaputra-Meghna delta. Proceedings of the National Academy of Sciences, 117(4), 1867–1876. https://doi.org/10.1073/pnas.1912921117
  • Bianchi, T. S., & Allison, M. A. (2009). Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences, 106(20), 8085–8092. https://doi.org/10.1073/pnas.0812878106
  • Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2(7), 488–491. https://doi.org/10.1038/ngeo553
  • Caldwell, R. L., & Edmonds, D. A. (2014). The effects of sediment properties on deltaic processes and morphologies: A numerical modeling study. Journal of Geophysical Research: Earth Surface, 119(5), 961–982. https://doi.org/10.1002/2013JF002965
  • Cazenave, A., & Cozannet, G. L. (2014). Sea level rise and its coastal impacts. Earth’s Future, 2(2), 15–34. https://doi.org/10.1002/2013EF000188
  • Changjiang Water Resources Commission. (2022). Changjiang river sediment bulletin. Changjiang Press.
  • Chen, J. Y., Li, D. J., Chen, B. L., Hu, F. X., Zhu, H. F., & Liu, C. Z. (1999). The processes of dynamic sedimentation in the Changjiang Estuary. Journal of Sea Research, 41(1-2), 129–140. https://doi.org/10.1016/S1385-1101(98)00047-1
  • Chen, J. Y., Shen, H. T., & Yun, C. X. (1988). Hydrodynamics and geomorphic evolution in the Yangtze (Changjiang) Estuary. Shanghai Science and Technology Press. in Chinese.
  • Chen, J. Y., Yun, C. X., Xu, H. G., & Dong, Y. F. (1979). The developmental model of the Chang Jiang river estuary during last 2000 years. Haiyang Xuebao, 1979(1), 103–111.
  • Chen, K. L., He, Z. X., Liu, J., Lin, Y. T., & Jia, L. W. (2022). Long-term morphological evolution and its mechanism of Lingdingyang estuary: Interferences from anthropogenic forcings. Marine Geology, 450, 106856. https://doi.org/10.1016/j.margeo.2022.106856
  • Chu, A. (2019). Analysis and modelling of morphodynamics of the Yangtze Estuary. Doctoral dissertation. Delft University of Technology.
  • Chu, A., Tai, J. A., Chen, Y. P., & Wang, B. (2020). Sediment budget of the mouth Bar in the Yangtze estuary response to the change of marine input conditions: A process-based model approach. Journal of Coastal Research, 105, 36–41.
  • Chu, A., Wang, Z. B., & de Vriend, H. J. (2015). Analysis on residual coarse sediment transport in estuaries. Estuarine. Coastal and Shelf Science, 163, 194–205. https://doi.org/10.1016/j.ecss.2015.06.003
  • Cox, J. R., Huismans, Y., Knaake, S. M., Leuven, J. R. F. W., Vellinga, N. E., van der Vegt, M., Hoitink, A. J. F., & Kleinhans, M. G. (2021). Anthropogenic effects on the contemporary sediment budget of the lower Rhine-Meuse Delta channel network. Earth’s Future, 9, e2020EF001869.
  • Dai, Z. J. (2021). Changjiang riverine and estuarine hydro-morphodynamic processes. Springer Singapore.
  • Dai, Z. J., Fagherazzi, S., Gao, S., Mei, X. F., Ge, Z. P., & Wei, W. (2018b). Scaling properties of estuarine beaches. Marine Geology, 404, 130–136. https://doi.org/10.1016/j.margeo.2018.07.011
  • Dai, Z. J., Liu, J. T., Fu, G., & Xie, H. L. (2013). A thirteen-year record of bathymetric changes in the north passage, Changjiang (Yangtze) estuary. Geomorphology, 187, 101–107. https://doi.org/10.1016/j.geomorph.2013.01.004
  • Dai, Z. J., Liu, J. T., Wei, W., & Chen, J. Y. (2014). Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta. Scientific Reports, 4, 1–7.
  • Dai, Z. J., Liu, J. T., & Wen, W. (2015). Morphological evolution of the south passage in the Changjiang (Yangtze River) estuary, China. Quaternary International, 380, 314–326. https://doi.org/10.1016/j.quaint.2015.01.045
  • Dai, Z. J., Mei, X. F., Darby, S. E., Lou, Y. Y., & Li, W. H. (2018a). Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system. Journal of Hydrology, 566, 719–734. https://doi.org/10.1016/j.jhydrol.2018.09.019
  • Deltares. (2014). User manual Delft3D-Flow: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Version 3.15, Delft, Netherlands.
  • Dunn, F. E., Darby, S. E., Nicholls, R. J., Cohen, S., Zarfl, C., & Fekete, B. M. (2019). Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environmental Research Letters, 14(8), 084034. https://doi.org/10.1088/1748-9326/ab304e
  • Edmonds, D. A., Toby, S. C., Siverd, C. G., Twilley, R., Bentley, S. J., Hagen, S., & Xu, K. H. (2023). Land loss due to human-altered sediment budget in the Mississippi River Delta. Nature Sustainability, 6, 644–651. https://doi.org/10.1038/s41893-023-01081-0
  • Elmilady, H., van der Wegen, M., Roelvink, D., & Jaffe, B. E. (2019). Intertidal area disappears under sea level rise: 250 years of morphodynamic modeling in San Pablo Bay, California. Journal of Geophysical Research: Earth Surface, 124(1), 38–59. https://doi.org/10.1029/2018JF004857
  • Elmilady, H., van der Wegen, M., Roelvink, D., & van der Spek, A. (2022). Modeling the morphodynamic response of estuarine intertidal shoals to sea-level rise. Journal of Geophysical Research: Earth Surface, 127(1), e2021JF006152. https://doi.org/10.1029/2021JF006152
  • Erban, L. E., Gorelick, S. M., & Zebker, H. A. (2014). Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9(8), 084010. https://doi.org/10.1088/1748-9326/9/8/084010
  • Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., & Meybeck, M. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications. Global and Planetary Change, 50(1-2), 63–82. https://doi.org/10.1016/j.gloplacha.2005.07.004
  • Eslami, S., Hoekstra, P., Nguyen Trung, N., Ahmed Kantoush, S., Van Binh, D., Duc Dung, D., Quang, T. T., & van der Vegt, M. (2019). Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation. Scientific Reports, 9(1), 18746. https://doi.org/10.1038/s41598-019-55018-9
  • Fagherazzi, S., Edmonds, D. A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., Jerolmack, D. J., Mariotti, G., Rowland, J. C., & Slingerland, R. L. (2015). Dynamics of river mouth deposits. Reviews of Geophysics, 53(3), 642–672. https://doi.org/10.1002/2014RG000451
  • Fagherazzi, S., Mariotti, G., Leonardi, N., Canestrelli, A., Nardin, W., & Kearney, W. S. (2020). Salt marsh dynamics in a period of accelerated sea level rise. Journal of Geophysical Research: Earth Surface, 125(8), e2019JF005200. https://doi.org/10.1029/2019JF005200
  • Finotello, A., Lentsch, N., & Paola, C. (2019). Experimental delta evolution in tidal environments: Morphologic response to relative sea-level rise and net deposition. Earth Surface Processes and Landforms, 44(10), 2000–2015. https://doi.org/10.1002/esp.4627
  • Gao, J. H., Shi, Y., Sheng, H., Kettner, A. J., Yang, Y., Jia, J. J., Wang, Y. P., Li, J., Chen, Y. N., Zou, X. Q., & Gao, S. (2019). Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations. Marine Geology, 414, 1–17. https://doi.org/10.1016/j.margeo.2019.05.003
  • Goodbred, Jr. S. L., & Kuehl, S. A. (1999). Holocene and modern sediment budgets for the Ganges-Brahmaputra river system: Evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters. Geology, 27(6), 559–562. https://doi.org/10.1130/0091-7613(1999)027<0559:HAMSBF>2.3.CO;2
  • GoodbredJrS. L., Kuehl, S. A., Steckler, M. S., & Sarker, M. H. (2003). Controls on facies distribution and stratigraphic preservation in the Ganges-Brahmaputra delta sequence. Sedimentary Geology, 155(3-4), 301–316. https://doi.org/10.1016/S0037-0738(02)00184-7
  • Guo, X. J., Fan, D. D., Zheng, S., Wang, H. M., Zhao, B. C., & Qin, C. J. (2021). Revisited sediment budget with latest bathymetric data in the highly altered Yangtze (Changjiang) Estuary. Geomorphology, 391, 107873. https://doi.org/10.1016/j.geomorph.2021.107873
  • Haney, R. L. (1991). On the pressure gradient force over steep topography in sigma coordinate ocean models. Journal of Physical Oceanography, 21, 610–619. https://doi.org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2
  • He, Z. G., Tang, Y. L., Xia, Y. Z., Chen, B. D., Xu, J., Yu, Z. Z., & Li, L. (2020). Interaction impacts of tides, waves and winds on storm surge in a channel-island system: Observational and numerical study in Yangshan Harbor. Ocean Dynamics, 70, 307–325. https://doi.org/10.1007/s10236-019-01328-5
  • Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y., & Kästner, K. (2017). Tidal controls on river delta morphology. Nature Geoscience, 10(9), 637–645. https://doi.org/10.1038/ngeo3000
  • Hori, K., Saito, Y., Zhao, Q., Cheng, X. R., Wang, P. X., Sato, Y., & Li, C. X. (2001). Sedimentary facies and holocene progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology, 41(2-3), 233–248. https://doi.org/10.1016/S0169-555X(01)00119-2
  • Hori, K., Saito, Y., Zhao, Q., & Wang, P. X. (2002). Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sedimentary Geology, 146(3-4), 249–264. https://doi.org/10.1016/S0037-0738(01)00122-1
  • Ibàñez, C., Canicio, A., Day, J. W., & Curcó, A. (1997). Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain. Journal of Coastal Conservation, 3, 191–202. https://doi.org/10.1007/BF02905244
  • Iwantoro, A. P., van der Vegt, M., & Kleinhans, M. G. (2022). Stability and asymmetry of tide-influenced river bifurcations. Journal of Geophysical Research: Earth Surface, 127(6), e2021JF006282. https://doi.org/10.1029/2021JF006282
  • Jiang, C. J., Li, J. F., & de Swart, H. E. (2012). Effects of navigational works on morphological changes in the bar area of the Yangtze Estuary. Geomorphology, 139, 205–219. https://doi.org/10.1016/j.geomorph.2011.10.020
  • Jiang, L., Gerkema, T., Idier, D., Slangen, A., & Soetaert, K. (2020). Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay. Ocean Science, 16(2), 307–321. https://doi.org/10.5194/os-16-307-2020
  • Khan, M. J. U., Durand, F., Testut, L., Krien, Y., & Islam, A. S. (2020). Sea level rise inducing tidal modulation along the coasts of Bengal delta. Continental Shelf Research, 211, 104289. https://doi.org/10.1016/j.csr.2020.104289
  • Kuang, C. P., Chen, W., Gu, J., Zhu, D. Z., He, L. L., & Huang, H. C. (2014). Numerical assessment of the impacts of potential future sea-level rise on hydrodynamics of the Yangtze River Estuary, China. Journal of Coastal Research, 30(3), 586–597. https://doi.org/10.2112/JCOASTRES-D-13-00149.1
  • Kuehl, S. A., DeMaster, D. J., & Nittrouer, C. A. (1986). Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Research, 6(1-2), 209–225. https://doi.org/10.1016/0278-4343(86)90061-0
  • Leonardi, N., Mei, X. F., Carnacina, I., & Dai, Z. J. (2021). Marine sediment sustains the accretion of a mixed fluvial-tidal delta. Marine Geology, 438, 106520. https://doi.org/10.1016/j.margeo.2021.106520
  • Li, J. F. (1991). The rule of sediment transport on the Nanhui tidal flat in the Changjiang Estuary. Acta Oceanologica Sinica, 1, 117–127.
  • Li, J. F., Dai, Z. J., Liu, X. C., Zhao, J. C., & Feng, L. X. (2010). Research on the movement of water and suspended sediment and sedimentation in Nanhui spit of the Yangtze Estuary before and after the construction of the reclamation projects on the tidal flat. Journal of Sediment Research, 3, 31–37. (in Chinese with English Abstract).
  • Li, J. F., Shi, W. R., & Shen, H. T. (1994). Sediment properties and transportation in the turbidity maximum in Changjiang Estuary. Geographical Research, 13, 51–59.
  • Li, X., Liu, J. P., & Tian, B. (2016). Evolution of the jiuduansha wetland and the impact of navigation works in the Yangtze Estuary, China. Geomorphology, 253, 328–339. https://doi.org/10.1016/j.geomorph.2015.10.031
  • Liu, J. P., Xu, K. H., Li, A. E. A., Milliman, J. D., Velozzi, D. M., Xiao, S. B., & Yang, Z. S. (2007). Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3-4), 208–224. https://doi.org/10.1016/j.geomorph.2006.03.023
  • Louters, T., van den Berg, J. H., & Mulder, J. P. (1998). Geomorphological changes of the Oosterschelde tidal system during and after the implementation of the delta project. Journal of Coastal Research, 1134–1151.
  • Luan, H. L., Ding, P. X., Wang, Z. B., & Ge, J. Z. (2017). Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: Controls on estuarine evolution and future trends. Geomorphology, 290, 347–364. https://doi.org/10.1016/j.geomorph.2017.04.016
  • Luan, H. L., Ding, P. X., Yang, S. L., & Wang, Z. B. (2021). Accretion-erosion conversion in the subaqueous Yangtze Delta in response to fluvial sediment decline. Geomorphology, 382, 107680. https://doi.org/10.1016/j.geomorph.2021.107680
  • Luo, J. J., Dai, Z. J., Wang, J., Lou, Y. Y., Zhou, X. Y., & Tang, R. N. (2023). Effects of human-induced riverine sediment transfer on deposition-erosion in the South Passage of the Changjiang (Yangtze) delta. Journal of Hydrology, 622, 129714. https://doi.org/10.1016/j.jhydrol.2023.129714
  • Luo, X. X., Yang, S. L., & Zhang, J. (2012). The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River (Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea. Geomorphology, 179, 126–140. https://doi.org/10.1016/j.geomorph.2012.05.034
  • Mei, X. F., Dai, Z. J., Darby, S. E., Zhang, M., Cai, H. Y., Wang, J., & Wei, W. (2021). Landward shifts of the maximum accretion zone in the tidal reach of the Changjiang estuary following construction of the Three Gorges Dam. Journal of Hydrology, 592, 125789. https://doi.org/10.1016/j.jhydrol.2020.125789
  • Mei, X. F., Dai, Z. J., Wei, W., Li, W. H., Wang, J., & Sheng, H. (2018). Secular bathymetric variations of the North Channel in the Changjiang (Yangtze) Estuary, People’s Republic of China, 1880-2013: Causes and effects. Geomorphology, 303, 30–40. https://doi.org/10.1016/j.geomorph.2017.11.014
  • Mei, X. F., Leonardi, N., Dai, J. X., & Wang, J. (2023). Cellular automata to understand the prograding limit of deltaic tidal flat. Engineering Applications of Computational Fluid Mechanics, 17(1), 2234038. https://doi.org/10.1080/19942060.2023.2234038
  • Nhuan, M. T., & Van Ngoi, C. (2012). An analysis of coastal erosion in the tropical rapid accretion delta of the red river, Vietnam. Journal of Asian Earth Sciences, 43(1), 98–109. https://doi.org/10.1016/j.jseaes.2011.08.014
  • Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J., & Fang, J. Y. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. https://doi.org/10.1038/s41558-021-00993-z
  • Nienhuis, J. H., Ashton, A. D., Edmonds, D. A., Hoitink, A. J. F., Kettner, A. J., Rowland, J. C., & Törnqvist, T. E. (2020). Global-scale human impact on delta morphology has led to net land area gain. Nature, 577, 514–518.
  • Nienhuis, J. H., Hoitink, A. J. F., & Törnqvist, T. E. (2018). Future change to tide-influenced deltas. Geophysical Research Letters, 45(8), 3499–3507. https://doi.org/10.1029/2018GL077638
  • Nienhuis, J. H., Kim, W., Milne, G. A., Quock, M., Slangen, A. B., & Törnqvist, T. E. (2023). River deltas and sea-level rise. Annual Review of Earth and Planetary Sciences, 51, 79–104. https://doi.org/10.1146/annurev-earth-031621-093732
  • Nienhuis, J. H., & van de Wal, R. S. (2021). Projections of global delta land loss from sea-level rise in the 21st century. Geophysical Research Letters, 48(14), e2021GL093368. https://doi.org/10.1029/2021GL093368
  • Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., & Wang, D. (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth’s Future, 3(6), 159–181. https://doi.org/10.1002/2015EF000298
  • Passeri, D. L., Hagen, S. C., Plant, N. G., Bilskie, M. V., Medeiros, S. C., & Alizad, K. (2016). Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico. Earth’s Future, 4(5), 159–176. https://doi.org/10.1002/2015EF000332
  • Porebski, S. J., & Steel, R. J. (2006). Deltas and sea-level change. Journal of Sedimentary Research, 76(3), 390–403. https://doi.org/10.2110/jsr.2006.034
  • Raff, J. L., Goodbred, Jr, S. L., Pickering, J. L., Sincavage, R. S., Ayers, J. C., Hossain, M. S., Wilson, C. A., Paola, C., Steckler, M. S., Mondal, D. R., Grimaud, J., Grall, C. J., Rogers, K. G., Ahmed, K. M., Akhter, S. H., Carlson, B. N., Chamberlain, E. L., Dejter, M., Gilligan, J. M., … Williams, L. A. (2023). Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts. Nature Communications, 14(1), 2429. https://doi.org/10.1038/s41467-023-38057-9
  • Sabatier, F., Samat, O., Ullmann, A., & Suanez, S. (2009). Connecting large-scale coastal behaviour with coastal management of the Rhone delta. Geomorphology, 107(1-2), 79–89. https://doi.org/10.1016/j.geomorph.2006.09.026
  • Saintilan, N., Kovalenko, K. E., Guntenspergen, G., Rogers, K., Lynch, J. C., Cahoon, D. R., Lovelock, C. E., Friess, D. A., Ashe, E., Krauss, K. W., Cormier, N., Spencer, T., Adams, J., Raw, J., Ibanez, C., Scarton, F., Temmerman, S., Meire, P., Maris, T., … Khan, N. (2022). Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science, 377(6605), 523–527. https://doi.org/10.1126/science.abo7872
  • Schmitt, R. J., Giuliani, M., Bizzi, S., Kondolf, G. M., Daily, G. C., & Castelletti, A. (2021). Strategic basin and delta planning increases the resilience of the Mekong Delta under future uncertainty. Proceedings of the National Academy of Sciences, 118(36), e2026127118. https://doi.org/10.1073/pnas.2026127118
  • Shaw, J. B., & Mohrig, D. (2014). The importance of erosion in distributary channel network growth, Wax Lake Delta, Louisiana, USA. Geology, 42(1), 31–34. https://doi.org/10.1130/G34751.1
  • Shaw, J. B., Mohrig, D., & Whitman, S. K. (2013). The morphology and evolution of channels on the Wax Lake Delta, Louisiana, USA. Journal of Geophysical Research: Earth Surface, 118(3), 1562–1584. https://doi.org/10.1002/jgrf.20123
  • Shen, H. T., He, S. L., Pan, D. G., & Li, J. F. (1992). A study of turbidity maximum in the Changjiang Estuary. Acta Geographical Sinica, 47, 472–479.
  • Shen, H. T., & Li, J. F. (2011). Water and sediment transport in Yangtze Estuary. China Ocean Press.
  • Sibson, R. (1981). A brief description of natural neighbor interpolation. Interpreting Multivariate Data, 21–36, John Wiley & Sons, New York.
  • Syvitski, J., Ángel, J. R., Saito, Y., Overeem, I., Vörösmarty, C. J., Wang, H. J., & Olago, D. (2022). Earth’s sediment cycle during the Anthropocene. Nature Reviews Earth & Environment, 3(3), 179–196. https://doi.org/10.1038/s43017-021-00253-w
  • Syvitski, J. P., Kettner, A. J., Overeem, I., Hutton, E. W., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., & Nicholls, R. J. (2009). Sinking deltas due to human activities. Nature Geoscience, 2(10), 681–686. https://doi.org/10.1038/ngeo629
  • Szczuciński, W., Jagodziński, R., Hanebuth, T. J., Stattegger, K., Wetzel, A., Mitręga, M., Unverricht, D., & Van Phach, P. (2013). Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong river delta, South China Sea. Global and Planetary Change, 110, 195–213. https://doi.org/10.1016/j.gloplacha.2013.08.019
  • Talke, S. A., & Jay, D. A. (2020). Changing tides: The role of natural and anthropogenic factors. Annual Review of Marine Science, 12, 121–151. https://doi.org/10.1146/annurev-marine-010419-010727
  • Tang, Z. H. (2008). Evaluating local coastal zone land use planning capacities in California. Ocean & Coastal Management, 51(7), 544–555. https://doi.org/10.1016/j.ocecoaman.2008.06.001
  • Tang, Z. H., Dai, Z. J., Fu, X. Y., & Li, X. (2013). Content analysis for the US coastal states’ climate action plans in managing the risks of extreme climate events and disasters. Ocean & Coastal Management, 80, 46–54. https://doi.org/10.1016/j.ocecoaman.2013.04.004
  • Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J. P., & Foufoula-Georgiou, E. (2015). Profiling risk and sustainability in coastal deltas of the world. Science, 349(6248), 638–643. https://doi.org/10.1126/science.aab3574
  • Tessler, Z. D., Vörösmarty, C. J., Overeem, I., & Syvitski, J. P. (2018). A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology, 305, 209–220. https://doi.org/10.1016/j.geomorph.2017.09.040
  • Thanh, V. Q., Reyns, J., Van, S. P., Anh, D. T., Dang, T. D., & Roelvink, D. (2019). Sediment transport and morphodynamical modeling on the estuaries and coastal zone of the Vietnamese Mekong Delta. Continental Shelf Research, 186, 64–76. https://doi.org/10.1016/j.csr.2019.07.015
  • van Binh, D., Kantoush, S., & Sumi, T. (2020). Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology, 353, 107011. https://doi.org/10.1016/j.geomorph.2019.107011
  • van De Lageweg, W. I., & Slangen, A. B. (2017). Predicting dynamic coastal delta change in response to sea-level rise. Journal of Marine Science and Engineering, 5(2), 24. https://doi.org/10.3390/jmse5020024
  • van der Spek, A. J., & Elias, E. P. (2021). Half a century of morphological change in the Haringvliet and Grevelingen ebb-tidal deltas (SW Netherlands)-impacts of large-scale engineering 1964-2015. Marine Geology, 432, 106404. https://doi.org/10.1016/j.margeo.2020.106404
  • van der Wegen, M. (2013). Numerical modeling of the impact of sea level rise on tidal basin morphodynamics. Journal of Geophysical Research: Earth Surface, 118(2), 447–460. https://doi.org/10.1002/jgrf.20034
  • van der Wegen, M., Jaffe, B., Foxgrover, A., & Roelvink, D. (2017). Mudflat morphodynamics and the impact of sea level rise in South San Francisco Bay. Estuaries and Coasts, 40(1), 37–49. https://doi.org/10.1007/s12237-016-0129-6
  • van der Wegen, M., & Jaffe, B. E. (2014). Processes governing decadal-scale depositional narrowing of the major tidal channel in San Pablo Bay, California, USA. Journal of Geophysical Research: Earth Surface, 119(5), 1136–1154. https://doi.org/10.1002/2013JF002824
  • van Maanen, B., Coco, G., Bryan, K. R., & Friedrichs, C. T. (2013). Modeling the morphodynamic response of tidal embayments to sea-level rise. Ocean Dynamics, 63, 1249–1262. https://doi.org/10.1007/s10236-013-0649-6
  • Vasilopoulos, G., Quan, Q. L., Parsons, D. R., Darby, S. E., Tri, V. P. D., Hung, N. N., Haigh, I. D., Voepel, H. E., Nicholas, A. P., & Aalto, R. (2021). Establishing sustainable sediment budgets is critical for climate-resilient mega-deltas. Environmental Research Letters, 16, 064089.
  • Vellinga, N. E., Hoitink, A. J. F., van der Vegt, M., Zhang, W., & Hoekstra, P. (2014). Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine-Meuse delta. Coastal Engineering, 90, 40–50. https://doi.org/10.1016/j.coastaleng.2014.04.005
  • Vinh, V. D., Ouillon, S., Thanh, T. D., & Chu, L. V. (2014). Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrology and Earth System Sciences, 18(10), 3987–4005. https://doi.org/10.5194/hess-18-3987-2014
  • Wang, J., Dai, Z. J., Fagherazzi, S., Lou, Y. Y., Mei, X. F., & Ma, B. B. (2023). Large-scale sedimentary shift induced by a mega dam in deltaic flats. Sedimentology, https://doi.org/10.1111/sed.13168
  • Wang, J., Dai, Z. J., Fagherazzi, S., Zhang, X. H., & Liu, X. Q. (2022a). Hydro-morphodynamics triggered by extreme riverine floods in a mega fluvial-tidal delta. Science of The Total Environment, 809, 152076. https://doi.org/10.1016/j.scitotenv.2021.152076
  • Wang, J., Dai, Z. J., Mei, X. F., & Fagherazzi, S. (2020). Tropical cyclones significantly alleviate mega-deltaic erosion induced by high riverine flow. Geophysical Research Letters, 47, e2020GL089065.
  • Wang, J., Dai, Z. J., Wei, W., Ge, Z. P., Pang, W. H., Ma, B. B., Mei, X. F., & Yu, Y. W. (2018a). LiDAR-based recent morphodynamic study of south Nanhui tidal flat, Changjiang Estuary. Oceanologia et Limnologia Sinica, 49, 756–768. (in Chinese with English Abstract).
  • Wang, Y. H., Dong, P., Oguchi, T., Chen, S. L., & Shen, H. T. (2013). Long-term (1842-2006) morphological change and equilibrium state of the Changjiang (Yangtze) Estuary, China. Continental Shelf Research, 56, 71–81. https://doi.org/10.1016/j.csr.2013.02.006
  • Wang, Z. H., Saito, Y., Zhan, Q., Nian, X. M., Pan, D. D., Wang, L., Chen, T., Xie, J. L., Li, X., & Jiang, X. Z. (2018b). Three-dimensional evolution of the Yangtze River mouth, China during the Holocene: Impacts of sea level, climate and human activity. Earth-Science Reviews, 185, 938–955. https://doi.org/10.1016/j.earscirev.2018.08.012
  • Wei, W., Dai, Z. J., Mei, X. F., Liu, J. P., Gao, S., & Li, S. S. (2017). Shoal morphodynamics of the Changjiang (Yangtze) estuary: Influences from river damming, estuarine hydraulic engineering and reclamation projects. Marine Geology, 386, 32–43. https://doi.org/10.1016/j.margeo.2017.02.013
  • Wei, W., Dai, Z. J., Pang, W. H., Wang, J., & Gao, S. (2020). Sedimentary zonation shift of tidal flats in a meso-tidal estuary. Sedimentary Geology, 407, 105749. https://doi.org/10.1016/j.sedgeo.2020.105749
  • Wei, W., Mei, X. F., Dai, Z. J., & Tang, Z. H. (2016). Recent morphodynamic evolution of the largest uninhibited island in the Yangtze (Changjiang) estuary during 1998–2014: Influence of the anthropogenic interference. Continental Shelf Research, 124, 83–94. https://doi.org/10.1016/j.csr.2016.05.011
  • Woodroffe, C. D., & Murray-Wallace, C. V. (2012). Sea-level rise and coastal change: The past as a guide to the future. Quaternary Science Reviews, 54, 4–11. https://doi.org/10.1016/j.quascirev.2012.05.009
  • Wu, Z. Y., Milliman, J. D., Zhao, D. N., Zhou, J. Q., & Yao, C. H. (2014). Recent geomorphic change in LingDing Bay, China, in response to economic and urban growth on the Pearl River Delta, Southern China. Global and Planetary Change, 123, 1–12. https://doi.org/10.1016/j.gloplacha.2014.10.009
  • Xie, D. F., Pan, C. H., Wu, X. G., Gao, S., & Wang, Z. B. (2017). The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years. Journal of Geophysical Research: Oceans, 122(4), 2999–3020. https://doi.org/10.1002/2016JC012264
  • Xue, Z., Liu, J. P., DeMaster, D., Van Nguyen, L., & Ta, T. K. O. (2010). Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam. Marine Geology, 269(1-2), 46–60. https://doi.org/10.1016/j.margeo.2009.12.005
  • Yang, S. L., Xu, K. H., Milliman, J. D., Yang, H. F., & Wu, C. S. (2015). Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Scientific Reports, 5(1), 12581. https://doi.org/10.1038/srep12581
  • Yang, S. L., Zhang, J., Zhu, J., Smith, J. P., Dai, S. B., Gao, A., & Li, P. (2005). Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. Journal of Geophysical Research: Earth Surface, 110, F03006.
  • Yin, Y., Karunarathna, H., & Reeve, D. E. (2019). Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Marine Geology, 407, 229–247. https://doi.org/10.1016/j.margeo.2018.11.005
  • Yun, C. X. (2004). Basic law of the recent evolution of the Changjiang Estuary. People’s Republic of China Ocean Press. (in Chinese).
  • Zhan, Q., Li, M. T., Liu, X. Q., Chen, J., & Chen, Z. Y. (2020). Sedimentary transition of the Yangtze subaqueous delta during the past century: Inspiration for delta response to future decline of sediment supply. Marine Geology, 428, 106279. https://doi.org/10.1016/j.margeo.2020.106279
  • Zhang, X. D., Zhang, Y. X., Zhu, L. H., Chi, W. Q., Yang, Z. S., Wang, B. Y., Lv, K., Wang, H. M., & Lu, Z. Y. (2018b). Spatial-temporal evolution of the eastern Nanhui mudflat in the Changjiang (Yangtze River) Estuary under intensified human activities. Geomorphology, 309, 38–50. https://doi.org/10.1016/j.geomorph.2018.02.023
  • Zhang, X. H., Fagherazzi, S., Leonardi, N., & Li, J. F. (2018a). A positive feedback between sediment deposition and tidal prism may affect the morphodynamic evolution of tidal deltas. Journal of Geophysical Research: Earth Surface, 123(11), 2767–2783. https://doi.org/10.1029/2018JF004639
  • Zhao, L. H., Xin, P., Cheng, H. F., & Chu, A. (2023). Change of turbidity maximum in Yangtze estuary after construction of the Three Gorges Dam. Continental Shelf Research, 258, 104983. https://doi.org/10.1016/j.csr.2023.104983
  • Zhu, B. Y., Yue, Y., Borthwick, A. G., Yu, W. J., Liang, E. H., Tang, J. W., Chai, Y. F., & Li, Y. T. (2020). Decadal link between longitudinal morphological changes in branching channels of Yangtze estuary and movement of the offshore depo-center. Earth Surface Processes and Landforms, 45(11), 2689–2705. https://doi.org/10.1002/esp.4923
  • Zhu, L., He, Q., Shen, J., & Wang, Y. Y. (2016). The influence of human activities on morphodynamics and alteration of sediment source and sink in the Changjiang Estuary. Geomorphology, 273, 52–62. https://doi.org/10.1016/j.geomorph.2016.07.025
  • Zou, X. Q., & Gao, S. (2019). Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations. Marine Geology, 414, 1–17. https://doi.org/10.1016/j.margeo.2019.05.003