442
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Propulsion curve analysis and optimisation of biomimetic pectoral fin with three degree of freedom based on multi-layer perception

, , &
Article: 2316810 | Received 13 Sep 2023, Accepted 02 Feb 2024, Published online: 15 Feb 2024

References

  • Azuma, A. (1992). The biokinetics of flying and swimming. Springer Japan. https://doi.org/10.1007/978-4-431-68210-3
  • Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52(1), 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214
  • Fish, F. E. (2010). Swimming strategies for energy economy. Fish Swimming an Etho, 90–122. https://doi.org/10.1201/b10190-5
  • Hale, M. E., Day, R. D., Thorsen, D. H., & Westneat, M. W. (2006). Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes. Journal of Experimental Biology, 209(Pt 19), 3708–3718. https://doi.org/10.1242/jeb.02449
  • Hu, Y., Liang, J., & Wang, T. (2015). Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising. Bioinspiration & Biomimetics, 10(2), Article 026006. https://doi.org/10.1088/1748-3190/10/2/026006
  • Lauder, G. V., & Jayne, B. C. (1996). Pectoral fin locomotion in fishes: Testing drag-based models using three-dimensional kinematics. American Zoologist, 36(6), 567–581. https://doi.org/10.1093/icb/36.6.567
  • Li, G., Kolomenskiy, D., Liu, H., Godoy-Diana, R., & Thiria, B. (2023). Intermittent versus continuous swimming: An optimization tale. Physical Review Fluids, 8(1), Article 013101. https://doi.org/10.1103/PhysRevFluids.8.013101
  • Liu, J., Yu, F., He, B., & Yan, T. (2022). Hydrodynamic numerical simulation and prediction of bionic fish based on computational fluid dynamics and multilayer perceptron. Engineering Applications of Computational Fluid Mechanics, 16(1), 858–878. https://doi.org/10.1080/19942060.2022.2052355
  • Mao, Q., Zhao, J., Liu, Y., & Sung, H. J. (2022). Hydrodynamic benefits of pectoral fins in a self-propelled flexible plate. Physics of Fluids, 34(2), 1–14. https://doi.org/10.1063/5.0081698
  • Martin, N., & Gharib, M. (2019). Experimental trajectory optimization of a flapping fin propulsor using an evolutionary strategy. Bioinspiration & Biomimetics, 14(1), Article 016010. https://doi.org/10.1088/1748-3190/aaefa5
  • McKee, A., Soto, A. P., Chen, P., & McHenry, M. J. (2020). The sensory basis of schooling by intermittent swimming in the rummy-nose tetra (Hemigrammus rhodostomus): Schooling by intermittent swimming. Proceedings. Biological Sciences, 287(1937), Article 20200568. https://doi.org/10.1098/rspb.2020.0568
  • Qiu, H., Chen, L., Ma, X., Bi, S., Wang, B., & Li, T. (2023). Analysis of heading stability due to interactions between pectoral and caudal fins in robotic boxfish locomotion. Journal of Bionic Engineering, 20(1), 390–405. https://doi.org/10.1007/s42235-022-00271-4
  • Scaradozzi, D., Palmieri, G., Costa, D., & Pinelli, A. (2017). BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Engineering, 130, 437–453. https://doi.org/10.1016/j.oceaneng.2016.11.055
  • Shoele, K., & Zhu, Q. (2010). Numerical simulation of a pectoral fin during labriform swimming. Journal of Experimental Biology, 213(12), 2038–2047. https://doi.org/10.1242/jeb.040162
  • Tangorra, J. L., Lauder, G. V., Hunter, I. W., Mittal, R., Madden, P. G. A., & Bozkurttas, M. (2010). The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. The Journal of Experimental Biology, 213(Pt 23), 4043–4054. https://doi.org/10.1242/jeb.048017
  • Videler, J. J. (1993). Fish swimming (10th ed.). Springer Science & Business Media. https://doi.org/10.1007/978-94-011-1580-3
  • Wang, Z. L., Su, Y. M., Yu, X. Z., & Wang, X. F. (2010). Experimental and numerical study on pectoral-fin propulsive system. China Ocean Engineering, 24(3), 513–522.
  • Weng, J., Zhu, Y., Du, X., Yang, G., & Hu, D. (2019). Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming. Bioinspiration & Biomimetics, 15(1), Article 016007. https://doi.org/10.1088/1748-3190/ab550e
  • Westneat, M. W. (1996). Functional morphology of aquatic flight in fishes: Kinematics, electromyography, and mechanical modeling of labriform locomotion. American Zoologist, 36(6), 582–598. https://doi.org/10.1093/icb/36.6.582
  • Wu, X., & Moin, P. (2008). A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. Journal of Fluid Mechanics, 608, 81–112. https://doi.org/10.1017/s0022112008002085
  • Xu, Y. G., & Wan, D. C. (2012). Numerical simulation of fish swimming with rigid pectoral fins. Journal of Hydrodynamics, 24(2), 263–272. https://doi.org/10.1016/s1001-6058(11)60243-6
  • Zhong, Q. (2021). Tunable stiffness enables fast and efficient swimming in fish-like robots. Science Robotics, 6(57), eabe4088. https://doi.org/10.1126/scirobotics.abe4088