278
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance improvement and numerical study on cathode channel for air-cooled open-cathode proton exchange membrane fuel cells

, , &
Article: 2351958 | Received 28 Feb 2024, Accepted 01 May 2024, Published online: 16 May 2024

References

  • Ashrafi, M., & Shams, M. (2017). The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels. Applied Energy, 208, 1083–1096. https://doi.org/10.1016/j.apenergy.2017.09.044
  • Chen, X., Yu, Z. K., & Wang, X. D. (2021a). Influence of wave parallel flow field design on the performance of PEMFC. Journal of Energy Engineering, 147, 1–12.
  • Chen, X., Yu, Z. K., & Yang, C. (2021b). Performance investigation on a novel 3D wave flow channel design for PEMFC. International Journal of Hydrogen Energy, 46(19), 11127–11139. https://doi.org/10.1016/j.ijhydene.2020.06.057
  • Cho, J. I. S., Neville, T. P., & Trogades, P. (2019). Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography. Energy, 170, 14–21. https://doi.org/10.1016/j.energy.2018.12.143
  • Choi, S. H., Kang, D. G., & Lim, I. S. (2022). Experimental study on non-uniform arrangement of 3D printed structure for cathodic flow channel in PEMFC. International Journal of Hydrogen Energy, 47(2), 1192–1201. https://doi.org/10.1016/j.ijhydene.2021.10.059
  • Chung, H. T., Cullen, D. A., & Higgins, D. (2017). Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science, 357(6350), 1015–1019. https://doi.org/10.1126/science.aan2255
  • Fan, Y. Q., Peng, L. Y., & Zhan, D. (2022). Surrogate model-based multiobjective design optimization for air-cooled battery thermal management systems. Eng. Appl. Comput. Fluid Mech, 16(1), 1031–1047.
  • Guo, N., Leu, M. C., & Koylu, U. O. (2014). Bio-inspired flow field designs for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 39(36), 21185–21195. https://doi.org/10.1016/j.ijhydene.2014.10.069
  • Huo, S., Shi, W., & Wang, R. (2021). Elucidating the operating behavior of PEM fuel cell with nickel foam as cathode flow field. Science China Technological Sciences, 64(5), 1041–1056. https://doi.org/10.1007/s11431-020-1767-5
  • Jiao, K., Bachman, J., & Zhou, Y. B. (2014). Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell. Applied Energy, 115, 75–82. https://doi.org/10.1016/j.apenergy.2013.10.026
  • Jiao, K., Xuan, J., & Du, Q. (2021). Designing the next generation of proton-exchange membrane fuel cells. Nature, 595(7867), 361–369. https://doi.org/10.1038/s41586-021-03482-7
  • Li, W. K., Zhang, Q. L., & Wang, C. (2017). Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Applied Energy, 195, 278–288. https://doi.org/10.1016/j.apenergy.2017.03.008
  • Liao, Z. H., Wei, L., & Dafalla, M. D. (2021). Numerical study of subfreezing temperature cold start of proton exchange membrane fuel cells with zigzag-channeled flow field. International Journal of Heat and Mass Transfer, 165, 120733. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120733
  • Luca, D. D., Fragiacomo, P., & Lorenzo, G. D. (2016). Strategies for dimensioning two-wheeled fuel cell hybrid electric vehicles using numerical analysis software. Fuel Cells, 16(5), 628–639. https://doi.org/10.1002/fuce.201500174
  • Niu, Z., Fan, L., Bao, Z., & Jiao, K. (2018). Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell. International Journal of Energy Research, 42(10), 3328–3338. https://doi.org/10.1002/er.4086
  • Nuttapol, L., & Patcharawat, C. A. (2015). Effect of different flow field designs and number of channels on performance of a small PEFC. International Journal of Hydrogen Energy, 40(22), 7144–7158. https://doi.org/10.1016/j.ijhydene.2015.04.007
  • Rostami, L., Puriya, M. G. N., & Ali, V. (2016). A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells. Energy, 97, 400–410. https://doi.org/10.1016/j.energy.2015.10.132
  • Sharaf, O. Z., & Orhan, M. F. (2014). An overview of fuel cell technology fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810–853. https://doi.org/10.1016/j.rser.2014.01.012
  • Shen, S. Y., Li, F., & Luo, L. X. (2018). DMF-coordination assisted electrodeposition of highly active PtCo alloy catalysts for the oxygen reduction reaction. Journal of The Electrochemical Society, 165(2), 43–49. https://doi.org/10.1149/2.0471802jes
  • Tian, R. X., Shen, S. Y., & Zhu, F. J. (2018). Icosahedral Pt-Ni nanocrystalline electrocatalyst: Growth mechanism and oxygen reduction activity. ChemSusChem, 11(6), 1015–1019. https://doi.org/10.1002/cssc.201800074
  • Vazifeshenas, Y., Sedighi, K., & Shakeri, M. (2015). Numerical investigation of a novel compound flow-field for PEMFC performance improvement. International Journal of Hydrogen Energy, 40(43), 15032–9. https://doi.org/10.1016/j.ijhydene.2015.08.077
  • Wang, X. D., Duan, Y. Y., & Yan, W. M. (2007). Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios. Journal of Power Sources, 172(1), 265–277. https://doi.org/10.1016/j.jpowsour.2007.07.026
  • Xing, S., Zhao, C., & Liu, W. (2021). Effects of bolt torque and gasket geometric parameters on open-cathode polymer electrolyte fuel cells. Applied Energy, 303, 117632. https://doi.org/10.1016/j.apenergy.2021.117632
  • Yan, X. H., Guan, C., & Zhang, Y. (2019). Flow field design with 3D geometry for proton exchange membrane fuel cells. Applied Thermal Engineering, 147, 1107–1114. https://doi.org/10.1016/j.applthermaleng.2018.09.110
  • Yin, X. H., Wang, X. L., & Wang, L. (2021). Cooperative control of air and fuel feeding for PEM fuel cell with ejector-driven recirculation. Applied Thermal Engineering, 199, 117590. https://doi.org/10.1016/j.applthermaleng.2021.117590
  • Yin, Y., Wang, X., & Shangguan, X. (2018). Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel. International Journal of Hydrogen Energy, 43(16), 8048–8062. https://doi.org/10.1016/j.ijhydene.2018.03.037
  • Zhang, B., Lin, F., & Zhang, C. Z. (2020). Design and implementation of model predictive control for an open-cathode fuel cell thermal management system. Renewable Energy, 154, 1014–1024. https://doi.org/10.1016/j.renene.2020.03.073
  • Zhang, G. B., Qu, Z. G., & Tao, W. Q. (2023a). Advancing next-generation proton-exchange membrane fuel cell development in multi-physics transfer. Joule, 8(1), 45–63. https://doi.org/10.1016/j.joule.2023.11.015
  • Zhang, G. B., Qu, Z. G., & Tao, W. Q. (2023b). Porous flow field for next-generation proton exchange membrane fuel cells: Materials, characterization, design, and challenges. Chemical Reviews, 123(3), 989–1039. https://doi.org/10.1021/acs.chemrev.2c00539
  • Zhang, G. B., Xie, B., & Bao, Z. (2018). Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. International Journal of Energy Research, 42(15), 4697–4709. https://doi.org/10.1002/er.4215
  • Zhao, C., Xing, S., & Chen, M. (2020). Optimal design of cathode flow channel for air-cooled PEMFC with open cathode. International Journal of Hydrogen Energy, 45(35), 17771–17781. https://doi.org/10.1016/j.ijhydene.2020.04.165