215
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and validation of a CFD-based model for simulating rotating drum separators

, , &
Article: 2368606 | Received 12 Mar 2024, Accepted 08 Jun 2024, Published online: 06 Jul 2024

References

  • Adnan, M., Sun, J., Ahmad, N., & Wei, J. J. (2021, May). Comparative CFD modeling of a bubbling bed using a Eulerian–Eulerian two-fluid model (TFM) and a Eulerian-Lagrangian dense discrete phase model (DDPM). Powder Technology, 383, 418–442. https://doi.org/10.1016/j.powtec.2021.01.063
  • ANSYS Inc. (2020). Ansys Fluent, User’s and Theory guide. (Release: 2020R2).
  • Baguley, P. J., & Napier-Munn, T. J. (1996). A mathematical model of the dense medium drum. Transactions of the Institute of Mining and Metallurgy Section C Mineral Processing and Extractive Metallurgy, 105, C1–C8.
  • Bakker, E. J., Rem, P. C., & Fraunholcz, N. (2009, May). Upgrading mixed polyolefin waste with magnetic density separation. Waste Management, 29(5), 1712–1717. https://doi.org/10.1016/j.wasman.2008.11.006
  • Cundall, P. A., & Strack, O. D. L. (1979, March). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. Retrieved June 14, 2023, from https://www.icevirtuallibrary.com/doi/10.1680/geot.1979.29.1.47 (Publisher: ICE Publishing)
  • Dimas, T., Peeters, J., & Vanierschot, M. (2024). Hydrodynamic force modeling in density based plastics separation using computational fluid dynamics. In 31st annual conference of the computational fluid dynamics society of Canada csme/cfd2024 (pp. 1–6). Toronto, Ontario, Canada.
  • Dodbiba, G., Haruki, N., Shibayama, A., Miyazaki, T., & Fujita, T. (2002, May). Combination of sink–float separation and flotation technique for purification of shredded PET-bottle from PE or PP flakes. International Journal of Mineral Processing, 65(1), 11–29. Retrieved September 15, 2021, from https://www.sciencedirect.com/science/article/pii/S0301751601000564
  • Eggers, A. (2020). Modelling and optimization of high density medium drum separators [PhD thesis]. KU Leuven. https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9992665201101488&context=L&vid=32KUL_KUL:KULeuven&search_scope=All_Content&tab=all_content_tab&lang=en
  • Eggers, A., Peeters, J. R., Waignein, L., Noppe, B., Dewulf, W., & Vanierschot, M. (2019, January). Development of a computational fluid dynamics model of an industrial scale dense medium drum separator. Engineering Applications of Computational Fluid Mechanics, 13(1), 1001–1012. Retrieved August 30, 2021, from https://doi.org/10.1080/19942060.2019.1663559 (Publisher: Taylor & Francis _eprint)
  • European Commission. (2018). A european strategy for plastics in a circular economy. https://tinyurl.com/yha9kjjx.
  • European Commission. (2022). Environmental impact of waste management: Revision of eu waste framework. https://tinyurl.com/mra4dt3z.
  • Froelich, D., Maris, E., Haoues, N., Chemineau, L., Renard, H., Abraham, F., & Lassartesses, R. (2007, August). State of the art of plastic sorting and recycling: Feedback to vehicle design. Minerals Engineering, 20(9), 902–912. Retrieved February 9, 2022, from https://www.sciencedirect.com/science/article/pii/S0892687507001392. https://doi.org/10.1016/j.mineng.2007.04.020
  • Gaustad, G., Olivetti, E., Kirchain, R., & Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources, Conservation & Recycling, 58, 79–87. https://doi.org/10.1016/j.resconrec.2011.10.010
  • Gent, M. R., Menendez, M., Toraño, J., & Diego, I. (2009, March). Recycling of plastic waste by density separation: Prospects for optimization. Waste Management & Research: The Journal for a Sustainable Circular Economy, 27(2), 175–187. Retrieved August 30, 2021, from https://doi.org/10.1177/0734242X08096950 (Publisher: SAGE Publications Ltd STM).
  • Gosman, A. D., & Loannides, E. (1983). Aspects of computer simulation of liquid-fueled combustors. Journal of Energy, 7(6), 482–490. Retrieved June 13, 2023, from https://doi.org/10.2514/3.62687 (Publisher: American Institute of Aeronautics and Astronautics _eprint)
  • Greifzu, F., Kratzsch, C., Forgber, T., Lindner, F., & Schwarze, R. (2016, January). Assessment of particle-tracking models for dispersed particle-laden flows implemented in open foam and ansys fluent. Engineering Applications of Computational Fluid Mechanics, 10(1), 30–43. Retrieved November 9, 2021, from https://www.tandfonline.com/doi/full/10.108019942060.2015.1104266
  • Halfi, E., Arad, A., Brenner, A., & Katoshevski, D. (2020, January). Development of an oscillation-based technology for the removal of colloidal particles from water: CFD modeling and experiments. Engineering Applications of Computational Fluid Mechanics, 14(1), 622–641. Retrieved April 6, 2023, from https://doi.org/10.1080/19942060.2020.1748114 (Publisher: Taylor & Francis _eprint)
  • Hilton, J. E., & Cleary, P. W. (2014, September). Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds. Applied Mathematical Modelling, 38(17), 4197–4214. Retrieved June 14, 2023, from https://www.sciencedirect.com/science/article/pii/S0307904X14000602. https://doi.org/10.1016/j.apm.2014.02.013
  • Hirt, C. W., & Nichols, B. D. (1981, January). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. Retrieved September 7, 2021, from https://www.sciencedirect.com/science/article/pii/0021999181901455. https://doi.org/10.1016/0021-9991(81)90145-5
  • Hori, K., Tsunekawa, M., Ueda, M., Hiroyoshi, N., Ito, M., & Okada, H. (2009). Development of a new gravity separator for plastics —a hybrid-jig—. Materials Transactions, 50(12), 2844–2847. https://doi.org/10.2320/matertrans.M-M2009825
  • Lu, J., Xu, J., Kumagai, S., Kameda, T., Saito, Y., & Yoshioka, T. (2019, June). Separation mechanism of polyvinyl chloride and copper components from swollen electric cables by mechanical agitation. Waste Management, 93, 54–62. Retrieved December 1, 2023, from https://www.sciencedirect.com/science/article/pii/S0956053X19303241. https://doi.org/10.1016/j.wasman.2019.05.024
  • Markauskas, D., Kruggel-Emden, H., & Scherer, V. (2018, February). Numerical analysis of wet plastic particle separation using a coupled DEM-SPH method. Powder Technology, 325, 218–227. Retrieved April 5, 2023, from https://www.sciencedirect.com/science/article/pii/S0032591017308902. https://doi.org/10.1016/j.powtec.2017.11.021
  • Menter, F. R. (1994, August). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. Retrieved April 20, 2023, from https://arc.aiaa.org/doi/10.25143.12149
  • Morsi, S. A., & Alexander, A. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(2), 193–208. https://doi.org/10.1017/S0022112072001806
  • Nascimento, S. M., Lima, R. M., Brandão, R. J., Santos, D. A., Duarte, C. R., & Barrozo, M. A. S. (2022, March). Comparison between the Eulerian (CFD) and the Lagrangian (DEM) approaches in the simulation of a flighted rotary drum. Computational Particle Mechanics, 9(2), 251–263. Retrieved December 1, 2023, from https://doi.org/10.1007/s40571-021-00407-z
  • Panchal, A., & Menon, S. (2021, August). A hybrid Eulerian-Eulerian/Eulerian-Lagrangian method for dense-to-dilute dispersed phase flows. Journal of Computational Physics, 439, 110339. Retrieved December 1, 2023, from https://www.sciencedirect.com/science/article/pii/S0021999121002345. https://doi.org/10.1016/j.jcp.2021.110339
  • Pang, X., Wang, C., Yang, W., Fan, H., Zhong, S., Zheng, W., Zou, H., & Chen, S. (2022, December). Numerical simulation of a cyclone separator to recycle the active components of waste lithium batteries. Engineering Applications of Computational Fluid Mechanics, 16(1), 937–951. Retrieved April 6, 2023, from https://doi.org/10.1080/19942060.2022.2053343 (Publisher: Taylor & Francis _eprint)
  • PlasticsEurope. (2022). Plasticseurope circularity report 2022. https://tinyurl.com/39y5myb6
  • Rong, W., Feng, Y., Schwarz, P., Witt, P., Li, B., Song, T., & Zhou, J. (2020, February). Numerical study of the solid flow behavior in a rotating drum based on a multiphase CFD model accounting for solid frictional viscosity and wall friction. Powder Technology, 361, 87–98. Retrieved April 5, 2023, from https://www.sciencedirect.com/science/article/pii/S0032591019308307. https://doi.org/10.1016/j.powtec.2019.10.034
  • Rousseau, M., & Melin, A. (1989, February). The processing of non-magnetic fractions from shredded automobile scrap: A review. Resources, Conservation and Recycling, 2(2), 139–159. Retrieved March 31, 2023, from https://www.sciencedirect.com/science/article/pii/0921344989900219. https://doi.org/10.1016/0921-3449(89)90021-9
  • Santos, D. A., Petri, I. J., Duarte, C. R., & Barrozo, M. A. S. (2013, December). Experimental and CFD study of the hydrodynamic behavior in a rotating drum. Powder Technology, 250, 52–62. Retrieved April 5, 2023, from https://www.sciencedirect.com/science/article/pii/S0032591013006062. https://doi.org/10.1016/j.powtec.2013.10.003
  • Serranti, S., Luciani, V., Bonifazi, G., Hu, B., & Rem, P. C. (2015, January). An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Management, 35, 12–20. Retrieved January 25, 2022, from https://www.sciencedirect.com/science/article/pii/S0956053X14005017. https://doi.org/10.1016/j.wasman.2014.10.017
  • Tajfirooz, S., Meijer, J., Dellaert, R., Meulenbroek, A., Zeegers, J., & Kuerten, J. (2021). Direct numerical simulation of magneto-archimedes separation of spherical particles. Journal of Fluid Mechanics, 910, A52. https://doi.org/10.1017/jfm.2020.1001
  • Tierean, M. H., Rem, P. C., Maio, F. D., Hu, B., Houzeaux, G., & Baltes, L. S. (2012). Magnetic fluid equipment for sorting secondary polyolefins from waste. Environmental Engineering and Management Journal, 12(5), 951–958. https://doi.org/10.30638/eemj.2013.118
  • Xia, Y., & Peng, F. F. (2007, January). Effect of structured plates on fine coal gravity separation in a liquid fluidized bed system. Engineering Applications of Computational Fluid Mechanics, 1(3), 164–180. Retrieved April 6, 2023, from https://doi.org/10.1080/19942060.2007.11015190 (Publisher: Taylor & Francis _eprint)
  • Yayla, S., Ibrahim, S. S., & Olcay, A. B. (2017, January). Numerical investigation of coalescing plate system to understand the separation of water and oil in water treatment plant of petroleum industry. Engineering Applications of Computational Fluid Mechanics, 11(1), 184–192. Retrieved April 6, 2023, from https://doi.org/10.1080/19942060.2016.1273137 (Publisher: Taylor & Francis _eprint)
  • Yuan, H., Fu, S., Tan, W., He, J., & Wu, K. (2015). Study on the hydrocyclonic separation of waste plastics with different density. Waste Management, 45, 108–111. https://www.sciencedirect.com/science/article/pii/S0956053X15000768 (Urban Mining). https://doi.org/10.1016/j.wasman.2015.01.037
  • Yuan, J., Li, H., Qi, X., Hu, T., Bai, M., & Wang, Y. (2020, January). Optimization of airflow cylinder sieve for threshed rice separation using CFD-DEM. Engineering Applications of Computational Fluid Mechanics, 14(1), 871–881. Retrieved April 6, 2023, from https://doi.org/10.1080/19942060.2020.1778540 (Publisher: Taylor & Francis _eprint)
  • Zhu, M., Hu, D., Xu, Y., & Zhao, S. (2020). Design and computational fluid dynamics analysis of a three-phase decanter centrifuge for oil-water-solid separation. Chemical Engineering & Technology, 43(5), 1005–1015. Retrieved April 5, 2023, from https://onlinelibrary.wiley.com/doi/abs/10.1002ceat.201900245 (_eprint)