191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance investigation of battery thermal management system based on L-shaped heat pipe coupled cold plate and optimization of controllable liquid cooling

, , , , , , & show all
Article: 2370941 | Received 15 Apr 2024, Accepted 15 Jun 2024, Published online: 04 Jul 2024

References

  • Ahmadi, M. H., Sadeghzadeh, M., Raffiee, A. H., & Chau, K. wing. (2019). Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes. Engineering Applications of Computational Fluid Mechanics, 13(1), 327–336. http://dx.doi.org/10.1080/19942060.2019.1582109
  • Akbarzadeh, M., Jaguemont, J., Kalogiannis, T., Karimi, D., He, J., Jin, L., Xie, P., Mierlo, J., & Berecibar, M. (2021). A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles. Energy Conversion and Management, 231, 113862. https://doi.org/10.1016/j.enconman.2021.113862
  • Bais, A. R., Subhedhar, D. G., Joshi, N. C., & Panchal, S. (2022). Numerical investigation on thermal management system for lithium ion battery using phase change material. Materials Today: Proceedings, 66, 1726–1733. https://doi.org/10.1016/j.matpr.2022.05.269
  • Behi, H., Behi, M., Karimi, D., Jaguemont, J., Ghanbarpour, M., Behnia, M., Berecibar, M., & Van Mierlo, J. (2021). Heat pipe air-cooled thermal management system for lithium-ion batteries:High power applications. Applied Thermal Engineering, 183, 116240. https://doi.org/10.1016/j.applthermaleng.2020.116240
  • Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Akbarzadeh, M., Gandoman, F. H., Berecibar, M., & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280. https://doi.org/10.1016/j.applthermaleng.2020.115280
  • Chen, K., Song, M., Wei, W., & Wang, S. (2019). Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement. International Journal of Heat and Mass Transfer, 132, 309–321. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.024
  • Chuwattanakul, V., Wongcharee, K., Ketain, P., Chamoli, S., Thianpong, C., & Eiamsa-ard, S. (2023). Aerothermal performance evaluation of a tube mounted with broken V-ribbed twisted tape: Effect of forward/ backward arrangement. Case Studies in Thermal Engineering, 41, 102642. https://doi.org/10.1016/j.csite.2022.102642
  • Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., & Xu, X. (2019). Dynamic thermal behave or of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 162, 114183. https://doi.org/10.1016/j.applthermaleng.2019.114183
  • Fan, Y., Lyu, P., Zhan, D., Ouyang, Y., Tan, X., & Li, J. (2022). Surrogate model-based multi-objective design optimization for air-cooled battery thermal management systems. Engineering Applications of Computational Fluid Mechanics, 16(1), 1031–1047. https://doi.org/10.1080/19942060.2022.2066180
  • Fan, Y., Wang, Z., Xiong, X., Zhu, J., Gao, Q., Wang, H., & Wu, H. (2023). Novel concept design of low energy hybrid battery thermal management system using PCM and multistage Tesla valve liquid cooling. Applied Thermal Engineering, 220, 119680. https://doi.org/10.1016/j.applthermaleng.2022.119680
  • Feng, R., Huang, P., Tang, Z., He, Y., & Bai, Z. (2022). Experimental and numerical study onthe cooling performance of heat pipe assisted composite phase change material-based battery thermal management system. Energy Conversion and Management, 272, 116359. https://doi.org/10.1016/j.enconman.2022.116359
  • Gan, Y., He, L., Liang, J., Tan, M., Xiong, T., & Li, Y. (2020). A numerical study on the performance of a thermal management system for a battery pack with cylindrical cells based on heat pipes. Applied Thermal Engineering, 179, 115740. https://doi.org/10.1016/j.applthermaleng.2020.115740
  • Han, U., Jun, Y. J., Choi, H. G., & Lee, H. (2023). Thermal performance analysis and optimization of heat pipe-assisted hybrid fin structure for lithium battery thermal management for extreme thermal conditions. International Communications in Heat and Mass Transfer, 149, 107128. https://doi.org/10.1016/j.icheatmasstransfer.2023.107128
  • He, L., Tang, X., Luo, Q., Liao, Y., Luo, X., Liu, J., Ma, L., Dong, D., Gan, Y., & Li, Y. (2022). Structure optimization of a heat pipe-cooling battery thermal management system based on fuzzy grey relational analysis. International Journal of Heat and Mass Transfer, 182, 121924. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121924
  • Huang, H., Wang, H., Gu, J., & Wu, Y. (2019). High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries. Energy Conversion and Management, 190, 54–72. https://doi.org/10.1016/j.enconman.2019.04.013
  • Jaidi, J., Chitta, S. D., Akkaldevi, C., Panchal, S., Fowler, M., & Fraser, R. (2022). Performance study on the effect of coolant inlet conditions for a 20 Ah LiFePO4 prismatic battery with commercial mini channel cold plates. Electrochemistry, 3(2), 259–275. https://doi.org/10.3390/electrochem3020018
  • Jang, D. S., Yun, S., Hong, S. H., Cho, W., & Kim, Y. (2022). Performance characteristics of a novel heat pipe-assisted liquid cooling system for the thermal management of lithium-ion batteries. Energy Conversion and Management, 251, 115001. https://doi.org/10.1016/j.enconman.2021.115001
  • Jilte, R. D., & Kumar, R. (2018). Numerical investigation on cooling performance of Li-ion battery thermal management system at high galvanostatic discharge. Engineering Science and Technology, an International Journal, 21(5), 957–969. http://dx.doi.org/10.1016/j.jestch.2018.07.015
  • Jilte, R. D., Kumar, R., & Ahmadi, M. H. (2019). Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems. Journal of Cleaner Production, 240, 118131. http://dx.doi.org/10.1016/j.jclepro.2019.118131
  • Jilte, R. D., Kumar, R., Ahmadi, M. H., & Chen, L. (2019). Battery thermal management system employing phase change material with cell-to-cell air cooling. Applied Thermal Engineering, 161, 114199. http://dx.doi.org/10.1016/j.applthermaleng.2019.114199
  • Jilte, R. D., Kumar, R., & Ma, L. (2019). Thermal performance of a novel confined flow Li-ion battery module. Applied Thermal Engineering, 146, 1–11. http://dx.doi.org/10.1016/j.applthermaleng.2018.09.099
  • Karimi, D., Behi, H., Berecibar, M., & Van Mierlo, J. (2023). A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge. Applied Energy, 339, 120987. https://doi.org/10.1016/j.apenergy.2023.120987
  • Khedher, N. B., Togun, H., Abed, A. M., Mohammed, H. I., Mahdi, J. M., Ibrahem, R. K., & Keshmiri, A. (2023). Comprehensive analysis of melting enhancement by circular Y-shaped fins in a vertical shell-and-tube heat storage system. Engineering Applications of Computational Fluid Mechanics, 17(1), https://doi.org/10.1080/19942060.2023.2227682
  • Kim, J., Oh, J., & Lee, H. (2019). Review on battery thermal management system for electric vehicles. Applied Thermal Engineering, 149, 192–212. https://doi.org/10.1016/j.applthermaleng.2018.12.020
  • Lai, Y., Wu, W., Chen, K., Wang, S., & Xin, C. (2019). A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. International Journal of Heat and Mass Transfer, 144, 118581. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118581
  • Li, Y., Guo, H., Qi, F., Guo, Z., Li, M., & Tjernberg, L. B. (2021). Investigation on liquid cold plate thermal management system with heat pipes for LiFePO4 battery pack in electric vehicles. Applied Thermal Engineering, 185, 116382. https://doi.org/10.1016/j.applthermaleng.2020.116382
  • Li, Y., Li, N., Shao, B., Dong, D., & Jiang, Z. (2023). Theoretical and experimental investigations on the supercritical startup of a cryogenic axially Ω-shaped grooved heat pipe. Applied Thermal Engineering, 222, 119951. https://doi.org/10.1016/j.applthermaleng.2022.119951
  • Liang, Y., Emadi, A., Gross, O., & Vidal, C. (2022). A comparative study between physics, electrical and data driven lithium-ion battery voltage modeling approaches. SAE Technical, Paper 01, 0700. https://doi.org/10.4271/2022-01-0700
  • Liang, J., Gan, Y., & Li, Y. (2018). Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Conversion and Management, 155, 1–9. https://doi.org/10.1016/j.enconman.2017.10.063
  • Liang, L., Zhao, Y., Diao, Y., Ren, R., & Jing, H. (2021). Inclined U-shaped flat micro heat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles. Energy, 235, 121433. https://doi.org/10.1016/j.energy.2021.121433
  • Liu, X., Chai, Y., Li, J., Gu., J., Zhu, J., Yang, L., Wei, W., Liu, C., & Liu, Y. (2023). Effect of evaporation and condensation section length ratio on thermal performance of aluminum flat plate heat pipe with different micro grooved wicks. Applied Thermal Engineering, 233, 121115. http://dx.doi.org/10.1016/j.applthermaleng.2023.121115
  • Liu, F., Chen, Y., Qin, W., & Li, J. (2023). Optimal design of liquid cooling structure with bionic leaf vein branch channel for power battery. Applied Thermal Engineering, 218, 119283. http://dx.doi.org/10.1016/j.applthermaleng.2022.119283
  • Liu, Q., Sun, C., Zhang, J., Shi, Q., Li, K., Yu, B., Xu, C., & Ju, X. (2023). The electro-thermal equalization behaviors of battery modules with immersion cooling. Applied Energy, 351, 121826. http://dx.doi.org/10.1016/j.apenergy.2023.121826
  • Liu, Q., Sun, C., Zhang, J., Shi, Q., Li, K., Yu, B., Xu, C., & Ju, X. (2023). The electro-thermal equalization behaviors of battery modules with immersion cooling. Applied Energy, 351, 121826. http://dx.doi.org/10.1016/j.apenergy.2023.121826
  • Liu, Z., Zhao, H., Qiu, Y., Zeng, H., & Dong, X. (2024). Numerical analysis of topology-optimized cold plates for thermal management of battery packs. Applied Thermal Engineering, 238, 121983. https://doi.org/10.1016/j.applthermaleng.2023.121983
  • Luo, D., Zhao, Y., Cao, I., Chen, W., Zhao, Y., & Cao, B. (2024). Performance analysis of a novel thermoelectric-based battery thermal management system. Renewable Energy, 224, 120193. https://doi.org/10.1016/j.renene.2024.120193
  • Murashkoa, K. A., Pyrhönenb, J., & Jokiniemi, J. (2020). Determination of the through-plane thermal conductivity and specific heat capacity of a Li-ion cylindrical cell. International Journal of Heat and Mass Transfer, 162, 120330. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120330
  • Pimsarn, M., Samruaisin, P., Thianpong, C., Ruengpayungsak, K., Eiamsa-ard, P., Chamoli, S., & Eiamsa-ard, S. (2022). Performance of a heat exchanger with compound inclined circular-rings and twisted tapes. Case Studies in Thermal Engineering, 37, 102285. https://doi.org/10.1016/j.csite.2022.102285
  • Ren, R., Diao, Y., Zhao, Y., & Liang, L. (2023). Experimental study on top liquid-cooling thermal management system based on Z-shaped micro heat pipe array. Energy, 282, 128321. https://doi.org/10.1016/j.energy.2023.128321
  • Ren, R., Zhao, Y., Diao, Y., Liang, L., & Jing, H. (2021). Active air cooling thermal management system based on U-shaped micro heat pipe array for lithium-ion battery. Journal of Power Sources, 507, 230314. https://doi.org/10.1016/j.jpowsour.2021.230314
  • Sutheesh, P. M., Nichit, R. B., & Rohinikumar, B. (2024). Numerical investigation of thermal management of lithium ion battery pack with nano-enhanced phase change material and heat pipe. Journal of Energy Storage, 77, 109972. https://doi.org/10.1016/j.est.2023.109972
  • Thakur, S., Akula, R., & Kumar, L. (2024). An effective and lightweight battery thermal management system with incremental contact area: A numerical study. Applied Thermal Engineering, 242, 122555. https://doi.org/10.1016/j.applthermaleng.2024.122555
  • Thianpong, C., Wongcharee, K., Kunnarak, K., Chokphoemphun, S., Chamoli, S., & Eiamsa-ard, S. (2024). Parametric study on thermal performance augmentation of TiO2/water nanofluids flowing a tube contained with dual counter twisted-tapes. Case Studies in Thermal Engineering, 59, 104471. https://doi.org/10.1016/j.csite.2024.104471
  • Wang, Z., & Du, C. (2021). A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews, 139, 110685. https://doi.org/10.1016/j.rser.2020.110685
  • Wang, J., Gan, Y., Liang, J., Tan, M., & Li, Y. (2019). Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Applied Thermal Engineering, 151, 475–485. http://dx.doi.org/10.1016/j.applthermaleng.2019.02.036
  • Wang, Y., Jiang, J., Chung, Y., Chen, W., & Shu, C. (2019). Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes. Journal of Thermal Analysis and Calorimetry, 135(5), 2891–2901. http://dx.doi.org/10.1007/s10973-018-7646-4
  • Wang, J., Mei, W., Mao, B., & Wang, Q. (2023). Investigation on the temperature control performance and optimization strategy of a battery thermal management system combining phase change and liquid cooling. Applied Thermal Engineering, 232, 121080. https://doi.org/10.1016/j.applthermaleng.2023.121080
  • Wang, J., Yu, Y., Song, L., Yue, Y., Zeng, W., Mei, W., & Wang, Q. (2024). Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries. Energy Conversion and Management, 302, 118106. http://dx.doi.org/10.1016/j.enconman.2024.118106
  • Wang, J., Yu, Y., Song, L., Yue, Y., Zeng, W., Mei, W., & Wang, Q. (2024). Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries. Energy Conversion and Management, 302, 118106. http://dx.doi.org/10.1016/j.enconman.2024.118106
  • Wang, J., Yu, Y., Song, L., Yue, Y., Zeng, W., Mei, W., & Wang, Q. (2024). Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries. Energy Conversion and Management, 302, 118106. http://dx.doi.org/10.1016/j.enconman.2024.118106
  • Wang, J., Yu, Y., Song, L., Yue, Y., Zeng, W., Mei, W., & Wang, Q. (2024). Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries. Energy Conversion and Management, 302, 118106. http://dx.doi.org/10.1016/j.enconman.2024.118106
  • Wang, S., Zhang, T., Gao, Q., Han, Z., Huang, H., & Yao, J. (2024). Performance simulation of L-shaped heat pipe and air coupled cooling process for ternary lithium battery module. Engineering Applications of Computational Fluid Mechanics, 18(1). http://dx.doi.org/10.1080/19942060.2023.2301058
  • Yang, W., Zhou, F., Liu, Y., Xu, S., & Chen, X. (2021). Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery. Applied Thermal Engineering, 188, 116649. https://doi.org/10.1016/j.applthermaleng.2021.116649
  • Zeng, W., Niu, Y., Li, S., Hu, S., Mao, B., & Zhang, Y. (2022). Cooling performance and optimization of a new hybrid thermal management system of cylindrical battery. Applied Thermal Engineering, 217, 119171. https://doi.org/10.1016/j.applthermaleng.2022.119171
  • Zhang, K., Li, Y., Chang, S., Hu, L., Wang, X., & Yu, M. (2024). Hydraulic and thermal performance enhancement for the cold plate using topology optimization. Applied Thermal Engineering, 236, 121829. http://dx.doi.org/10.1016/j.applthermaleng.2023.121829
  • Zhang, S., Nie, F., Cheng, J., Yang, H., & Gao, Q. (2024). Optimizing the air flow pattern to improve the performance of the air-cooling lithium-ion battery pack. Applied Thermal Engineering, 236, 121486. http://dx.doi.org/10.1016/j.applthermaleng.2023.121486
  • Zhao, D., An, C., Jia, Z., & Lei, Z. (2024). Structure optimization of liquid-cooled plate for electric vehicle lithium-ion power batteries. International Journal of Thermal Sciences, 195, 108614. https://doi.org/10.1016/j.ijthermalsci.2023.108614
  • Zhao, Z., Panchal, S., Kollmeyer, P., & Emadi, A. (2022). 3D FEA thermal modeling with experimentally measured loss gradient of large format ultra-fast charging battery module used for EVs. SAE Technical, Paper 01, 0711. https://doi.org/10.4271/2022-01-0711