145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of angle parameters of tip sails for improvement of aircraft flight performance

, , &
Article: 2374976 | Received 24 Apr 2024, Accepted 25 Jun 2024, Published online: 11 Jul 2024

References

  • Ahmad, N. N., Proctor, F. H., & Perry, R. B. (2013). Numerical simulation of the aircraft wake vortex flowfield. 5th AIAA Atmospheric and Space Environments Conference. American Institute of Aeronautics and Astronautics, Inc.
  • Allmaras, S. R., Johnson, F. T., & Spalart, P. R. (2012). Modifications and clarifications for the implementation of the spalart-allmaras turbulence model. 7th International Conference on Computational Fluid Dynamics. Hawaii Big Island.
  • Azargoon, Y., & Djavareshkian, M. H. (2023). Unsteady characteristic study on the flapping wing with the corrugated trailing edge and slotted wingtip. Aerospace Science and Technology, 139, 108402. https://doi.org/10.1016/j.ast.2023.108402
  • Bertin, J. J., & Cummings, R. M. (2021). Aerodynamics for engineers. Cambridge University Press.
  • Brothers, E. (2019). Airbus unveils hybrid-electric regional airliner concept. Retrieved April 15, 2024, from https://www.airbus.com/en/innovation/disruptive-concepts/biomimicry.
  • Catalano, F. M., & Ceron-Muñoz, H. D. (2005). Experimental analysis of aerodynamics characteristics of adaptive multi-winglets. 43rd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Inc.
  • Cerón-Muñoz, H. D., Catalano, F. M., & Coimbra, R. F. (2008). Passive, active, and adaptative systems for wing vortex drag reduction. Proceedings of the 26th International Congress of the Aeronautical Sciences. International Council of the Aeronautical Sciences (ICAS).
  • Churchfield, M. J., & Blaisdell, G. A. (2009). Numerical simulations of a wingtip vortex in the near field. Journal of Aircraft, 46(1), 230–243. https://doi.org/10.2514/1.38086
  • Company, N. A. (1957). Y5 – Chinese version of the AN-2. Retrieved April 15, 2024, from https://www.an2flyers.org.
  • Cosin, R., Catalano, F. M., Correa, L. G. N., & Entz, R. M. U. (2010). Aerodynamic analysis of multi-winglets for low speed aircraft. 27th International Congress of the Aeronautical Sciences. International Council of the Aeronautical Sciences (ICAS).
  • Dacles-Mariani, J., Zilliac, G. G., Chow, J. S., & Bradshaw, P. (1995). Numerical/experimental study of a wingtip vortex in the near field. AIAA Journal, 33(9), 1561–1568. https://doi.org/10.2514/3.12826
  • Dan, L., Bifeng, S., Wenqing, Y., Dong, X., & Xinyu, L. (2022). Unsteady characteristic research on aerodynamic interaction of slotted wingtip in flapping kinematics. Chinese Journal of Aeronautics, 35(4), 82–101. https://doi.org/10.1016/j.cja.2021.07.010
  • Gharbia, Y., Derakhshandeh, J. F., Alam, M. M., & Amer, A. (2023). Developments in wingtip vorticity mitigation techniques: A comprehensive review. Aerospace, 11(1), 36. https://doi.org/10.3390/aerospace11010036
  • Guerrero, J., Sanguineti, M., & Wittkowski, K. (2018). CFD study of the impact of variable cant angle winglets on total drag reduction. Aerospace, 5(4), 126. https://doi.org/10.3390/aerospace5040126
  • Guerrero, J. E., Sanguineti, M., & Wittkowski, K. (2020). Variable cant angle winglets for improvement of aircraft flight performance. Meccanica, 55(10), 1917–1947. https://doi.org/10.1007/s11012-020-01230-1
  • He, X., Wang, K., Liu, T., Feng, Y., Zhang, B., Yuan, W., & Wang, X. (2023). HODG: High-order discontinuous Galerkin methods for solving compressible Euler and Navier-Stokes equations-an open-source component-based development framework. Computer Physics Communications, 286, 108660. https://doi.org/10.1016/j.cpc.2023.108660
  • Heylmun, J., Vonk, P., & Brewer, T. (2022). blastFoam version 6.0 User Guide. Synthetik Applied Technologies, LLC. https://github.com/synthetik-technologies/blastfoam.
  • Huang, Q. M.., Ren, Y. X.., & Wang, Q. (2021). High order finite volume schemes for solving the non-conservative convection equations on the unstructured grids. Journal of Scientific Computing, 88(2), 37. https://doi.org/10.1007/s10915-021-01538-4
  • Huang, Q. M.., Ren, Y. X.., Wang, Q., & Pan, J. H.. (2022). High-order compact finite volume schemes for solving the Reynolds averaged Navier-Stokes equations on the unstructured mixed grids with a large aspect ratio. Journal of Computational Physics, 467, 111458. https://doi.org/10.1016/j.jcp.2022.111458
  • Huang, X., Yang, W., Li, Y., Qiu, B., Guo, Q., & Zhuqing, L. (2019). Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery. Applied Mathematics and Computation, 341, 46–69. https://doi.org/10.1016/j.amc.2018.08.027
  • Hui, Z., Cheng, G., & Chen, G. (2021). Experimental investigation on tip-vortex flow characteristics of novel bionic multi-tip winglet configurations. Physics of Fluids, 33(1), 011902. https://doi.org/10.1063/5.0036369
  • Ishimitsu, K., VanDevender, N., Dodson, R., Brault, P., & Byers, B. (1976). Design and analysis of winglets for military aircraft. Air Force Flight Dynamics Laboratory
  • Ji, Z., Liang, T., & Fu, L. (2023). High-order finite-volume TENO schemes with dual ENO-like stencil selection for unstructured meshes. Journal of Scientific Computing, 95(3), 76. https://doi.org/10.1007/s10915-023-02199-1
  • Liu, D., Song, B., Yang, W., Yang, X., Xue, D., & Lang, X. (2021). A brief review on aerodynamic performance of wingtip slots and research prospect. Journal of Bionic Engineering, 18(6), 1255–1279. https://doi.org/10.1007/s42235-021-00116-6
  • Luo, H., Baum, J., & Lohner, R. (2003). Parallel unstructured grid GMRES+ LU-SGS method for turbulent flows. 41st Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Inc.
  • Makgantai, B., Subaschandar, N., & Jamisola, R. S. (2021). A review on wingtip devices for reducing induced drag on fixed-wing drones. Journal of Xi'an University of Architecture & Technology, 13(1), 143–160. https://doi.org/10.37896/JXAT13.11/314115
  • March, A. I., Bradley, C. W., & Garcia, E. (2005). Aerodynamic properties of avian flight as a function of wing shape. Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers.
  • Merryisha, S., & Rajendran, P. (2019). Review of winglets on tip vortex, drag and airfoil geometry. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(2), 218–237.
  • O'Regan, M., Griffin, P., & Young, T. (2016). A vorticity confinement model applied to URANS and LES simulations of a wing-tip vortex in the near-field. International Journal of Heat and Fluid Flow, 61, 355–365. https://doi.org/10.1016/j.ijheatfluidflow.2016.05.014
  • Pereira, F. S., Eça, L., & Vaz, G. (2019). Simulation of wingtip vortex flows with Reynolds-averaged Navier–Stokes and scale-resolving simulation methods. AIAA Journal, 57(3), 932–948. https://doi.org/10.2514/1.J057512
  • Reddy, S. R., Sobieczky, H., Dulikravic, G. S., & Abdoli, A. (2016). Multi-element winglets: Multi-objective optimization of aerodynamic shapes. Journal of Aircraft, 53(4), 992–1000. https://doi.org/10.2514/1.C033334
  • Segui, M., Abel, F. R., Botez, R. M., & Ceruti, A. (2021). New aerodynamic studies of an adaptive winglet application on the Regional Jet CRJ700. Biomimetics, 6(4), 54. https://doi.org/10.3390/biomimetics6040054
  • Siddiqui, N. A., Aldeeb, M., Asrar, W., & Sulaeman, E. (2018). Experimental investigation of a new spiral wingtip. International Journal of Aviation, Aeronautics, and Aerospace, 5(2), 6.
  • Torenbeek, E. (2013). Advanced aircraft design: Conceptual design, analysis and optimization of subsonic civil airplanes. John Wiley & Sons.
  • Tucker, V. A. (1995). Drag reduction by wing tip slots in a gliding Harris' hawk, Parabuteo unicinctus. Journal of Experimental Biology, 198(3), 775–781. https://doi.org/10.1242/jeb.198.3.775
  • Whitcomb, R. T. (1976). A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets (NASA TN D-8260). Natl. Aeronaut. Space Admin.
  • Yang, M. (2024). Aerofoam. GitHub. Retrieved May 28, 2024, from https://github.com/buaaymh/AeroFOAM.git.
  • Yang, M., & Li, S. (2023). An efficient implementation of compact third-order implicit reconstruction solver with a simple WBAP limiter for compressible flows on unstructured meshes. Engineering Applications of Computational Fluid Mechanics, 17(1), 2249135. https://doi.org/10.1080/19942060.2023.2249135
  • Zhang, Q., & Yang, Y. (2013). A new simpler rotation/curvature correction method for Spalart–Allmaras turbulence model. Chinese Journal of Aeronautics, 26(2), 326–333. https://doi.org/10.1016/j.cja.2013.02.009
  • Zhou, C. B., Wang, Q., & Ren, Y. X. (2024). Machine learning optimization of compact finite volume methods on unstructured grids. Journal of Computational Physics, 500, 112746. https://doi.org/10.1016/j.jcp.2023.112746