163
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of momentum flow ratio on entrainment of a confined coaxial jet in a co-flow

, , , &
Article: 2374977 | Received 08 Apr 2024, Accepted 25 Jun 2024, Published online: 15 Jul 2024

References

  • Ahmed, M. R., & Sharma, S. D. (2000). Effect of velocity ratio on the turbulent mixing of confined, co-axial jets. Experimental Thermal and Fluid Science, 22(1-2), 19–33. https://doi.org/10.1016/S0894-1777(00)00006-6
  • Akselvoll, K., & Moin, P. (1996). Large-eddy simulation of turbulent confined coannular jets. Journal of Fluid Mechanics, 315, 387–411. https://doi.org/10.1017/S0022112096002479
  • ANSYS, Inc. (2023). Ansys fluent theory guide, release 2023 R1.
  • Balarac, G., Si-Ameur, M., Lesieur, M., & Métais, O. (2007). Direct numerical simulations of high velocity ratio coaxial jets: Mixing properties and influence of upstream conditions. Journal of Turbulence, 8, 1–27. https://doi.org/10.1080/14685240600833094
  • Celik, I., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), 078001. https://doi.org/10.1115/1.2960953
  • Champagne, F. H., & Wygnanski, I. J. (1971). An experimental investigation of coaxial turbulent jets. International Journal of Heat and Mass Transfer, 14(9), 1445–1464. https://doi.org/10.1016/0017-9310(71)90191-8
  • Chen, R.-H., Driscoll, J. F., Kelly, J., Schefer, R. W., & Namazian, M. (1990). A comparison of bluff-body and swirl-stabilized flames. Combustion Science and Technology, 71(4–6), 197–217. https://doi.org/10.1080/00102209008951632
  • Correa, S. M., & Gulati, A. (1992). Measurements and modeling of a bluff body stabilized flame. Combustion and Flame, 89(2), 195–213. https://doi.org/10.1016/0010-2180(92)90028-N
  • Dahm, W. J. A., Frieler, C. E., & Tryggvason, G. (1992). Vortex structure and dynamics in the near field of a coaxial jet. Journal of Fluid Mechanics, 241, 371–402. https://doi.org/10.1017/S0022112092002088
  • Forstall, W. J., & Shapiro, A. H. (1950). Momentum and mass transfer in coaxial gas jets. Journal of Applied Mechanics, 17(4), 399–408. https://doi.org/10.1115/1.4010167
  • Gran, I. R., & Magnussen, B. F. (1996). A numerical study of a bluff-body stabilized diffusion flame. Part 1. Influence of turbulence modeling and boundary conditions. Combustion Science and Technology, 119(1–6), 171–190. https://doi.org/10.1080/00102209608951998
  • Han, D., & Mungal, M. G. (2001). Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combustion and Flame, 124(3), 370–386. https://doi.org/10.1016/S0010-2180(00)00211-X
  • Ko, N. W. M., & Kwan, A. S. H. (1976). The initial region of subsonic coaxial jets. Journal of Fluid Mechanics, 73(2), 305–332. https://doi.org/10.1017/S0022112076001389
  • Kwan, A. S. H., & Ko, N. W. M. (1976). Coherent structures in subsonic coaxial jets. Journal of Sound and Vibration, 48(2), 203–219. https://doi.org/10.1016/0022-460X(76)90460-0
  • Larsson, I. A. S., Granström, B. R., Lundström, T. S., & Marjavaara, B. D. (2012). PIV analysis of merging flow in a simplified model of a rotary kiln. Experiments in Fluids, 53(2), 545–560. https://doi.org/10.1007/s00348-012-1309-1
  • Larsson, I. A. S., Johansson, S. P. A., Lundström, T. S., & Marjavaara, B. D. (2015). PIV/PLIF experiments of jet mixing in a model of a rotary kiln. Experiments in Fluids, 56(111).
  • Larsson, I. A. S., Lindmark, E. M., Lundström, T. S., Marjavaara, D., & Töyrä, S. (2012). Visualization of merging flow by usage of PIV and CFD with application to grate-kiln induration machines. Journal of Applied Fluid Mechanics, 5(4), 81–89.
  • Larsson, I. A. S., Lundström, T. S., & Marjavaara, B. D. (2015a). Calculation of kiln aerodynamics with two RANS turbulence models and by DDES. Flow, Turbulence and Combustion, 94(4), 859–878. https://doi.org/10.1007/s10494-015-9602-8
  • Larsson, I. A. S., Lundström, T. S., & Marjavaara, B. D. (2015b). The flow field in a virtual model of a rotary kiln as a function of inlet geometry and momentum flux ratio. Journal of Fluids Engineering, 137(10), 101102. https://doi.org/10.1115/1.4030536
  • Larsson, I. A. S., Lycksam, H., Lundström, T. S., & Marjavaara, B. D. (2020). Experimental study of confined coaxial jets in a non-axisymmetric co-flow. Experiments in Fluids, 61(12).
  • Larsson, I. A. S., Marjavaara, B. D., & Lundström, T. S. (2016). Simulation of the flow field in an iron ore pelletizing kiln. Minerals & Metallurgical Processing, 33(3), 144–148. https://doi.org/10.19150/mmp.6751
  • Li, W., Yuan, M., Carter, C. D., & Tong, C. (2017). Experimental investigation of the effects of mean shear and scalar initial length scale on three-scalar mixing in turbulent coaxial jets. Journal of Fluid Mechanics, 817, 183–216. https://doi.org/10.1017/jfm.2017.101
  • Ma, H. K., & Harn, J. S. (1994). The jet mixing effect on reaction flow in a bluff-body burner. International Journal of Heat and Mass Transfer, 37(18), 2957–2967. https://doi.org/10.1016/0017-9310(94)90350-6
  • Mullinger, P., & Jenkins, B. (2023). Industrial and process furnaces: Principles, design and operation (3rd ed.). Butterworth-Heinemann.
  • Naturvårdsverket. (2023, June). Industri, utsläpp av växthusgaser [Industry, emissions of greenhouse gases]. https://www.naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-utslapp-fran-industrin/
  • Rehab, H., Villermaux, E., & Hopfinger, E. J. (1997). Flow regimes of large-velocity-ratio coaxial jets. Journal of Fluid Mechanics, 345, 357–381. https://doi.org/10.1017/S002211209700637X
  • Segalini, A., & Talamelli, A. (2011). Experimental analysis of dominant instabilities in coaxial jets. Physics of Fluids, 23(2), 024103. https://doi.org/10.1063/1.3553280
  • van Hout, R., Murugan, S., Mitra, A., & Cukurel, B. (2021). Coaxial circular jets—A review. Fluids, 6(4), 147. https://doi.org/10.3390/fluids6040147
  • Wang, X., Zhu, F., Wang, S., & Wang, Z. (2023). Confinement effects on coaxial jet diffusion flame. Combustion Science and Technology, 1–29. https://doi.org/10.1080/00102202.2023.2277785
  • Wei, J., Xie, Q., Zhang, J., & Ren, Z. (2021). Flow, mixing, and flame stabilization in bluff-body burner with decreased central jet velocity. Physics of Fluids, 33(6), 067122. https://doi.org/10.1063/5.0052933
  • Wiinikka, H., Sepman, A., Ögren, Y., Lindblom, B., & Nordin, L. O. (2019). Combustion evaluation of renewable fuels for iron-ore pellet induration. Energy & Fuels, 33(8), 7819–7829. https://doi.org/10.1021/acs.energyfuels.9b01356