1,473
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Phylogenetic diversity in fim and mfa gene clusters between Porphyromonas gingivalis and Porphyromonas gulae, as a potential cause of host specificity

, ORCID Icon, , , , & ORCID Icon show all
Article: 1775333 | Received 18 Nov 2019, Accepted 25 May 2020, Published online: 19 Jun 2020

References

  • Shah HN , Collins MD. Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas . Int J Syst Bacteriol. 1988;38(1):128–11.
  • Finegold SM , Barnes EM . Report of the ICSB taxonomic subcommittee on Gram-negative anaerobic rods. Int J Syst Evol Microbiol. 1977;27:388–391.
  • TJM VS , van Winkelhoff AJ , Mayrand D , et al. Bacteroides endodontalis sp. nov., an asaccharolytic black-pigmented Bacteroides species from infected dental root canals. Int J Syst Evol Microbiol. 1984;34:118–120.
  • Collins MD , Love DN , Karjalainen J , et al. Phylogenetic analysis of members of the genus Porphyromonas and description of Porphyromonas cangingivalis sp. nov. and Porphyromonas cansulci sp. nov. Int J Syst Bacteriol. 1994;44:674–679.
  • Coykendall AL , Kaczmarek FS , Slots J . Genetic heterogeneity in Bacteroides asaccharolyticus (Holdeman and Moore 1970) Finegold and Barnes 1977 (Approved Lists, 1980) and proposal of Bacteroides gingivalis sp. nov. and Bacteroides macacae (Slots and Genco) comb. nov. Int J Syst Evol Microbiol. 1980;30:559–564.
  • Lamont RJ , Jenkinson HF . Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis . Microbiol Mol Biol Rev. 1998;62:1244–1263.
  • Socransky SS , Haffajee AD , Cugini MA , et al. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–144.
  • Hajishengallis G , Darveau RP , Curtis MA . The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–725.
  • Fournier D , Mouton C , Lapierre P , et al. Porphyromonas gulae sp. nov., an anaerobic, gram-negative coccobacillus from the gingival sulcus of various animal hosts. Int J Syst Evol Microbiol. 2001;51:1179–1189.
  • Senhorinho GN , Nakano V , Liu C , et al. Detection of Porphyromonas gulae from subgingival biofilms of dogs with and without periodontitis. Anaerobe. 2011;17:257–258.
  • Lenzo JC , O’Brien-Simpson NM , Orth RK , et al. Porphyromonas gulae has virulence and immunological characteristics similar to those of the human periodontal pathogen Porphyromonas gingivalis . Infect Immun. 2016;84(9):2575–2585.
  • O’Flynn C , Deusch O , Darling AE , et al. Comparative genomics of the genus Porphyromonas identifies adaptations for heme synthesis within the prevalent canine oral species Porphyromonas cangingivalis . Genome Biol Evol. 2015;7:3397–3413.
  • Nagano K , Hasegawa Y , Iijima Y , et al. Distribution of Porphyromonas gingivalis fimA and mfa1 fimbrial genotypes in subgingival plaques. Peer J. 2018;6:e5581.
  • Nagano K , Abiko Y , Yoshida Y , et al. Porphyromonas gingivalis FimA fimbriae: roles of the fim gene cluster in the fimbrial assembly and antigenic heterogeneity among fimA genotypes. J Oral Biosci. 2012;54(3):160–163.
  • Kloppsteck P , Hall M , Hasegawa Y , et al. Structure of the fimbrial protein Mfa4 from Porphyromonas gingivalis in its precursor form: implications for a donor-strand complementation mechanism. Sci Rep. 2016;6:22945.
  • Hayashi J , Nishikawa K , Hirano R , et al. Identification of a two-component signal transduction system involved in fimbriation of Porphyromonas gingivalis . Microbiol Immunol. 2000;44(4):279–282.
  • Nishikawa K , Yoshimura F , Duncan MJ . A regulation cascade controls expression of Porphyromonas gingivalis fimbriae via the FimR response regulator. Mol Microbiol. 2004;54(2):546–560.
  • Enersen M , Nakano K , Amano A . Porphyromonas gingivalis fimbriae. J Oral Microbiol. 2013;5.
  • Nagano K , Hasegawa Y , Yoshida Y , et al. A major fimbrilin variant of Mfa1 fimbriae in Porphyromonas gingivalis . J Dent Res. 2015;94:1143–1148.
  • Nomura R , Shirai M , Kato Y , et al. Diversity of fimbrillin among Porphyromonas gulae clinical isolates from Japanese dogs. J Vet Med Sci. 2012;74:885–891.
  • Yamasaki Y , Nomura R , Nakano K , et al. Distribution and molecular characterization of Porphyromonas gulae carrying a new fimA genotype. Vet Microbiol. 2012;161:196–205.
  • Foley J . Mini-review: strategies for variation and evolution of bacterial antigens. Comput Struct Biotechnol J. 2015;13:407–416.
  • Takeuchi Y , Umeda M , Ishizuka M , et al. Prevalence of periodontopathic bacteria in aggressive periodontitis patients in a Japanese population. J Periodontol. 2003;74:1460–1469.
  • Watanabe T , Nozawa T , Aikawa C , et al. CRISPR regulation of intraspecies diversification by limiting IS transposition and intercellular recombination. Genome Biol Evol. 2013;5:1099–1114.
  • Zhao Y , Wu J , Yang J , et al. PGAP: pan-genomes analysis pipeline. Bioinformatics. 2012;28:416–418.
  • Katoh K , Standley DM . MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780.
  • Bruen TC , Philippe H , Bryant D . A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172:2665–2681.
  • Huson DH , Bryant D . Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–267.
  • Stamatakis A . RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313.
  • Jones DT , Taylor WR , Thornton JM . The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275–282.
  • Keane TM , Creevey CJ , Pentony MM , et al. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol. 2006;6:29.
  • Huson DH , Scornavacca C . Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–1067.
  • Iwashita N , Nomura R , Shirai M , et al. Identification and molecular characterization of Porphyromonas gulae fimA types among cat isolates. Vet Microbiol. 2019;229:100–109.
  • Crooks GE , Hon G , Chandonia JM , et al. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190.
  • Amano A , Nakagawa I , Okahashi N , et al. Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J Periodontal Res. 2004;39:136–142.
  • Nakagawa I , Amano A , Kuboniwa M , et al. Functional differences among FimA variants of Porphyromonas gingivalis and their effects on adhesion to and invasion of human epithelial cells. Infect Immun. 2002;70:277–285.
  • Nakano K , Kuboniwa M , Nakagawa I , et al. Comparison of inflammatory changes caused by Porphyromonas gingivalis with distinct fimA genotypes in a mouse abscess model. Oral Microbiol Immunol. 2004;19:205–209.
  • Hasegawa Y , Murakami Y . Porphyromonas gingivalis fimbriae: recent developments describing the function and localization of mfa1 gene cluster proteins. J Oral Biosci. 2014;56:86–90.
  • Hall M , Hasegawa Y , Yoshimura F , et al. Structural and functional characterization of shaft, anchor, and tip proteins of the Mfa1 fimbria from the periodontal pathogen Porphyromonas gingivalis . Sci Rep. 2018;8:1793.
  • Yoshimura F , Takahashi Y , Hibi E , et al. Proteins with molecular masses of 50 and 80 kilodaltons encoded by genes downstream from the fimbrilin gene (fimA) are components associated with fimbriae in the oral anaerobe Porphyromonas gingivalis . Infect Immun. 1993;61:5181–5189.
  • Nishiyama S , Murakami Y , Nagata H , et al. Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis in adhesive functions. Microbiology. 2007;153:1916–1925.
  • Nagano K , Hasegawa Y , Abiko Y , et al. Porphyromonas gingivalis FimA fimbriae: fimbrial assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes. PLoS One. 2012;7:e43722.
  • Nishikawa K , Duncan MJ . Histidine kinase-mediated production and autoassembly of Porphyromonas gingivalis fimbriae. J Bacteriol. 2010;192:1975–1987.
  • Nagano K , Hasegawa Y , Murakami Y , et al. FimB regulates FimA fimbriation in Porphyromonas gingivalis . J Dent Res. 2010;89:903–908.
  • Hasegawa Y , Iwami J , Sato K , et al. Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2. Microbiology. 2009;155:3333–3347.
  • Frandsen EV , Poulsen K , Curtis MA , et al. Evidence of recombination in Porphyromonas gingivalis and random distribution of putative virulence markers. Infect Immun. 2001;69:4479–4485.
  • Tribble GD , Kerr JE , Wang BY . Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol. 2013;8:607–620.
  • Dashper SG , Mitchell HL , Seers CA , et al. Porphyromonas gingivalis uses specific domain rearrangements and allelic exchange to generate diversity in surface virulence factors. Front Microbiol. 2017;8:48.
  • Tribble GD , Lamont GJ , Progulske-Fox A , et al. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis . J Bacteriol. 2007;189:6382–6388.
  • Naito M , Sato K , Shoji M , et al. Characterization of the Porphyromonas gingivalis conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer. Microbiology. 2011;157:2022–2032.
  • Tribble GD , Rigney TW , Dao DH , et al. Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis . MBio. 2012;3:e00231–11.
  • Marraffini LA , Sontheimer EJ . CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11:181–190.