2,291
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Activity of five antimicrobial peptides against periodontal as well as non-periodontal pathogenic strains

ORCID Icon, , , &
Article: 1829405 | Received 27 Jul 2020, Accepted 21 Sep 2020, Published online: 07 Oct 2020

References

  • Drisko CL. Periodontal debridement: still the treatment of choice. J Evid Based Dent Pract. 2014;14 Suppl:33–41.e1.
  • Santuchi CC, Cortelli JR, Cortelli SC, et al. Scaling and root planing per quadrant versus one-stage full-mouth disinfection: assessment of the impact of chronic periodontitis treatment on quality of life—a clinical randomized, controlled trial. J Periodontol. 2016;87(2):114–9.
  • Smiley CJ, Tracy SL, Abt E, et al. Evidence-based clinical practice guideline on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J Am Dent Assoc. 2015;146(7):525–535.
  • da Costa LFNP, Amaral C, da Silva Barbirato D, et al. Chlorhexidine mouthwash as an adjunct to mechanical therapy in chronic periodontitis: a meta-analysis. J Am Dent Assoc. 2017;148(5):308–318.
  • Pretzl B, Sälzer S, Ehmke B, et al. Administration of systemic antibiotics during non-surgical periodontal therapy-a consensus report. Clin Oral Investig. 2019;23(7):3073–3085.
  • Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543(7643):15.
  • Magrone T, Russo MA, Jirillo E. Antimicrobial peptides: phylogenic sources and biological activities. first of two parts. Curr Pharm Des. 2018;24(10):1043–1053.
  • Nuti R, Goud NS, Saraswati AP, et al. Antimicrobial peptides: a promising therapeutic strategy in tackling antimicrobial resistance. Curr Med Chem. 2017;24(38):4303–4314.
  • Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44(D1):D1087–93.
  • McCrudden MTC, O’Donnell K, Irwin CR, et al. Effects of LL-37 on gingival fibroblasts: a role in periodontal tissue remodeling? Vaccines (Basel). 2018;6(3). DOI:10.3390/vaccines6030044
  • Kindrachuk J, Jenssen H, Elliott M, et al. Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory. Innate Immun. 2013;19(3):315–327.
  • Yu X, Quan J, Long W, et al. LL-37 inhibits LPS-induced inflammation and stimulates the osteogenic differentiation of BMSCs via P2X7 receptor and MAPK signaling pathway. Exp Cell Res. 2018;372(2):178–187.
  • Zarrinnahad H, Mahmoodzadeh A, Hamidi MP, et al. Apoptotic effect of melittin purified from iranian honey bee venom on human cervical cancer hela cell line. Int J Pept Res Ther. 2018;24(4):563–570.
  • Kuipers OP, Beerthuyzen MM, de Ruyter PG, et al. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem. 1995;270(45):27299–27304.
  • Habermann E. Zur Pharmakologie des Melittin. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie. 1954;222(1):173–175.
  • Park IY, Park CB, Kim MS, et al. an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett. 1998;437(3):258–262.
  • Vorland LH. Lactoferrin: a multifunctional glycoprotein. APMIS. 1999;107(11):971–981.
  • Sørensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;97(12):3951–3959.
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55.
  • Xhindoli D, Pacor S, Benincasa M, et al. The human cathelicidin LL-37–A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta. 2016;1858(3):546–566.
  • Lee -C-C, Sun Y, Qian S, et al. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J. 2011;100(7):1688–1696.
  • Hart PT, Oppedijk SF, Breukink E, et al. New insights into nisin’s antibacterial mechanism revealed by binding studies with synthetic lipid ii analogues. Biochemistry. 2016;55(1):232–237.
  • European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect. 2000;6(9): 509–515.
  • Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005;38:135–187.
  • Fuchs S, Pané-Farré J, Kohler C, et al. Anaerobic gene expression in Staphylococcus aureus. J Bacteriol. 2007;189(11):4275–4289.
  • Kolar SL, Ibarra JA, Rivera FE, et al. Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. MicrobiologyOpen. 2013;2(1):18–34.
  • Wiedemann I, Breukink E, van Kraaij C, et al. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem. 2001;276(3):1772–1779.
  • Prince A, Sandhu P, Ror P, et al. Lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Sci Rep. 2016;6:37908.
  • Sochacki KA, Barns KJ, Bucki R, et al. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci U S A. 2011;108(16):E77–81.
  • Orsi N. The antimicrobial activity of lactoferrin: current status and perspectives. Biometals. 2004;17(3):189–196.
  • Sallmann FR, Baveye-Descamps S, Pattus F, et al. Porins OmpC and PhoE of Escherichia coli as specific cell-surface targets of human lactoferrin. Binding characteristics and biological effects. J Biol Chem. 1999;274(23):16107–16114.
  • Kim N, Yun M, Oh YJ, et al. Mind-altering with the gut: modulation of the gut-brain axis with probiotics. J Microbiol. 2018;56(3):172–182.
  • Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, et al. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients. 2017;9(6). DOI:10.3390/nu9060555
  • Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN, et al. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 2019;19(1):131.
  • Toscano M, de Grandi R, Stronati L, et al. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: a preliminary study. World J Gastroenterol. 2017;23(15):2696–2704.
  • Allen AP, Hutch W, Borre YE, et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry. 2016;6(11):e939.
  • Yousuf A, Sidiq M, Ganta S, et al. Effect of freeze dried powdered probiotics on gingival status and plaque inhibition: a randomized, double-blind, parallel study. Contemp Clin Dent. 2017;8(1):116–121.
  • Rahman MM, Kim W-S, Ito T, et al. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe. 2009;15(4):133–137.
  • Kim W-S, Ohashi M, Tanaka T, et al. Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. Biometals. 2004;17(3):279–283.
  • Chen P-W, Ku Y-W, Chu F-Y. Influence of bovine lactoferrin on the growth of selected probiotic bacteria under aerobic conditions. Biometals. 2014;27(5):905–914.
  • Shin JM, Ateia I, Paulus JR, et al. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front Microbiol. 2015;6:617.
  • Dosler S, Gerceker AA. In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J Chemother. 2012;24(3):137–143.
  • Geitani R, Ayoub Moubareck C, Touqui L, et al. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2019;19(1):54.
  • Ebbensgaard A, Mordhorst H, Overgaard MT, et al. Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PloS One. 2015;10(12):e0144611.
  • Choi JH, Jang AY, Lin S, et al. Melittin, a honeybee venom‑derived antimicrobial peptide, may target methicillin‑resistant Staphylococcus aureus. Mol Med Rep. 2015;12(5):6483–6490.
  • Koo YS, Kim JM, Park IY, et al. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide. Peptides. 2008;29(7):1102–1108.
  • Ji S, Hyun J, Park E, et al. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res. 2007;42(5):410–419.
  • Turner J, Cho Y, Dinh -N-N, et al. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998;42(9):2206–2214.
  • Altman H, Steinberg D, Porat Y, et al. In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J Antimicrob Chemother. 2006;58(1):198–201.
  • Tomasinsig L, Morgera F, Antcheva N, et al. Structure dependence of biological activities for primate cathelicidins. J Pept Sci. 2009;15(9):576–582.
  • Dorschner RA, Lopez-Garcia B, Peschel A, et al. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. Faseb J. 2006;20(1):35–42.
  • Johansson J, Gudmundsson GH, Rottenberg ME, et al. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem. 1998;273(6):3718–3724.
  • Travis SM, Anderson NN, Forsyth WR, et al. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun. 2000;68(5):2748–2755.
  • Tenovuo J, Lehtonen OP, Aaltonen AS, et al. Antimicrobial factors in whole saliva of human infants. Infect Immun. 1986;51(1):49–53. Available from: https://iai.asm.org/content/51/1/49.short
  • Jentsch H, Sievert Y, Göcke R. Lactoferrin and other markers from gingival crevicular fluid and saliva before and after periodontal treatment. J Clin Periodontol. 2004;31(7):511–514.
  • Miyasaki KT, Voganatsi A, Huynh T, et al. Calprotectin and lactoferrin levels in the gingival crevicular fluid of children. J Periodontol. 1998;69(8):879–883.
  • Gustafsson A, Asman B, Bergström K. Elastase and lactoferrin in gingival crevicular fluid: possible indicators of a granulocyte-associated specific host response. J Periodontal Res. 1994;29(4):276–282.
  • Davidopoulou S, Diza E, Menexes G, et al. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol. 2012;57(7):865–869.
  • Mumcu G, Cimilli H, Karacayli U, et al. Salivary levels of antimicrobial peptides Hnp 1-3, Ll-37 and S100 in Behcet’s disease. Arch Oral Biol. 2012;57(6):642–646.
  • Gorr S-U. Antimicrobial peptides in periodontal innate defense. Front Oral Biol. 2012;15:84–98.
  • Nakamichi Y, Horibe K, Takahashi N, et al. Roles of cathelicidins in inflammation and bone loss. Odontology. 2014;102(2):137–146.
  • Berlutti F, Pilloni A, Pietropaoli M, et al. Lactoferrin and oral diseases: current status and perspective in periodontitis. Ann Stomatol (Roma). 2012;2(3–4):10–18.
  • Inubushi T, Kawazoe A, Miyauchi M, et al. Lactoferrin inhibits infection-related osteoclastogenesis without interrupting compressive force-related osteoclastogenesis. Arch Oral Biol. 2014;59(2):226–232.
  • Alugupalli KR, Kalfas S. Inhibitory effect of lactoferrin on the adhesion of Actinobacillus actinomycetemcotnitans and Prevotella intermedia to fibroblasts and epithelial cells. APMIS. 1995;103(1‐6):154–160.
  • Sol A, Ginesin O, Chaushu S, et al. LL-37 opsonizes and inhibits biofilm formation of Aggregatibacter actinomycetemcomitans at subbactericidal concentrations. Infect Immun. 2013;81(10):3577–3585.
  • Tan Z, Luo J, Liu F, et al. Effects of pH, temperature, storage time, and protective agents on nisin antibacterial stability. In: Zhang T-C, Nakajima M, editors. Advances in applied biotechnology: proceedings of the 2nd international conference on applied biotechnology (ICAB 2014)-volume II. Lecture notes in electrical engineering. Heidelberg: Springer; 2015. p. 333.
  • Suzuki YA, Kelleher SL, Yalda D, et al. Expression, characterization, and biologic activity of recombinant human lactoferrin in rice. J Pediatr Gastroenterol Nutr. 2003;36(2):190–199.
  • Zhang X, Oglęcka K, Sandgren S, et al. Dual functions of the human antimicrobial peptide LL-37—Target membrane perturbation and host cell cargo delivery. Biochim Biophys Acta - Biomembr. 2010;1798(12):2201–2208.
  • Henzler Wildman KA, Lee D-K, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry. 2003;42(21):6545–6558.
  • Galgut PN. The relevance of pH to gingivitis and periodontitis. J Int Acad Periodontol. 2001;3(3):61–67.
  • Abe H, Saito H, Miyakawa H, et al. Heat stability of bovine lactoferrin at acidic pH. J Dairy Sci. 1991;74(1):65–71.
  • Guerra NP, Pastrana L. Modelling the influence of pH on the kinetics of both nisin and pediocin production and characterization of their functional properties. Process Biochem. 2002;37(9):1005–1015.
  • Huot E, Barrena-Gonzalez C, Petitdemange H. Comparative effectiveness of nisin and bacteriocin J46 at different pH values. Lett Appl Microbiol. 1996;22(1):76–79.
  • van den Bogaart G, Guzmán JV, Mika JT, et al. On the mechanism of pore formation by melittin. J Biol Chem. 2008;283(49):33854–33857.
  • Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Biosci Rep. 2007;27(4–5):189–223.
  • Park S-C, Kim J-Y, Shin S-O, et al. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem Biophys Res Commun. 2006;343(1):222–228.