4,489
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Oral microbiome in down syndrome and its implications on oral health

, , , , , , , , , , , , , & ORCID Icon show all
Article: 1865690 | Received 07 Oct 2020, Accepted 15 Dec 2020, Published online: 30 Dec 2020

References

  • Lukowski AF, Milojevich HM, Eales L. Cognitive functioning in children with down syndrome: current knowledge and future directions. Adv Child Dev Behav. 2019;56:257–17.
  • Sherman SL, Allen EG, Bean LH, et al. Epidemiology of Down syndrome. Ment Retard Dev Disabil Res Rev. 2007;13:221–227.
  • Franceschi C, Garagnani P, Morsiani C, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med. 2018;5:61.
  • Horvath S, Garagnani P, Bacalini MG, et al. Accelerated epigenetic aging in down syndrome. Aging Cell. 2015;14(3):491–495..
  • Borelli V, Vanhooren V, Lonardi E, et al. Plasma N-glycome signature of down syndrome. J Proteome Res. 2015;14:4232–4245.
  • Rampelli S, Soverini M, D’Amico F, et al. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems. 2020;5. DOI:https://doi.org/10.1128/mSystems.00124-20.
  • Liu A, Lv H, Wang H, et al. Aging Increases the Severity of Colitis and the Related Changes to the Gut Barrier and Gut Microbiota in Humans and Mice. J Gerontol A Biol Sci Med Sci. 2020;75:1284–1292.
  • Maffei VJ, Kim S, Blanchard E 4th, et al. Biological aging and the human gut microbiota. J Gerontol A Biol Sci Med Sci. 2017;72:1474–1482.
  • Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26:1480–1485.
  • Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2018;23(4):570.
  • Peterson J, Garges S, Giovanni M, et al.; NIH HMP Working Group. The NIH human microbiome project. Genome Res. 2009;19(12):2317–2323..
  • Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.
  • Biagi E, Candela M, Centanni M, et al. Gut microbiome in down syndrome. PLoS One. 2014;9(11):e112023.
  • Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms. 2020;8(2):308.
  • Cichon P, Crawford L, Grimm W-D. Early-onset periodontitis associated with down’s syndrome–a clinical interventional study. Ann Periodontol. 1998;3:370–380.
  • Khocht A, Yaskell T, Janal M, et al. Subgingival microbiota in adult down syndrome periodontitis. J Periodontal Res. 2012;47:500–507.
  • Kornman KS. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008;79(8s):1560–1568.
  • Barr-Agholme M, Dahllöf G, Linder L, et al. Actinobacillus actinomycetemcomitans, capnocytophaga and porphyromonas gingivalis in subgingival plaque of adolescents with Down’s syndrome. Oral Microbiol Immunol. 1992;7:244–248.
  • Meskin LH, Farsht EM, Anderson DL. Prevalence of Bacteroides melaninogenicus in the gingival crevice area of institutionalized trisomy 21 and cerebral palsy patients and normal children. J Periodontol. 1968;39:326–328.
  • Sakellari D, Arapostathis KN, Konstantinidis A. Periodontal conditions and subgingival microflora in Down syndrome patients. A case-control study. J Clin Periodontol. 2005;32:684–690.
  • Amano A, Kishima T, Akiyama S, et al. Relationship of periodontopathic bacteria with early-onset periodontitis in Down’s syndrome. J Periodontol. 2001;72:368–373.
  • Khocht A. Down syndrome and periodontal disease. Genetics and etiology of Down syndrome. Subrata Dey, InTechOpen; 2011. DOI: https://doi.org/10.5772/17371. Available from: https://www.intechopen.com/books/genetics-and-etiology-of-down-syndrome/down-syndrome-and-periodontal-disease.
  • Agholme MB, Dahllöf G, Modéer T. Changes of periodontal status in patients with Down syndrome during a 7-year period. Eur J Oral Sci. 1999;107:82–88.
  • Reuland-Bosma W, Dijk J. Periodontal disease in down’s syndrome: a review. J Clin Periodontol. 1986;13:64–73.
  • Martinez-Martinez RE, Loyola-Rodriguez JP, Bonilla-Garro SE, et al. Characterization of periodontal biofilm in down syndrome patients: a comparative study. J Clin Pediatr Dent. 2013;37(3):289–296.
  • Amano A, Murakami J, Akiyama S, et al. Etiologic factors of early-onset periodontal disease in Down syndrome. Japan Dent Sci Rev. 2008;44(2):118–127.
  • Deps TD, Angelo GL, Martins CC, et al. Association between dental caries and down syndrome: a systematic review and meta-analysis. PLoS One. 2015;10(6):e0127484.
  • Moreira MJS, Schwertner C, Jardim JJ, et al. Dental caries in individuals with down syndrome: a systematic review. Int J Paediatr Dent. 2016;26:3–12.
  • Cheng RHW, Yiu CKY, Leung WK. Oral health in individuals with Down syndrome. In: Prenatal diagnosis and screening for down syndrome. Rijeka, Croatia: Subrata Dey, InTechOpen; 2011. p. 59–76.
  • Vigild M. Dental caries experience among children with down’s syndrome. J Ment Defic Res. 1986;30(Pt 3):271–276.
  • Willis JR, González-Torres P, Pittis AA, et al. Citizen science charts two major “stomatotypes” in the oral microbiome of adolescents and reveals links with habits and drinking water composition. Microbiome. 2018;6(1):218.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583.
  • Callahan BJ DADA2 pipeline tutorial (1.16) Available online: https://benjjneb.github.io/dada2/tutorial.html (accessed on 2020 Jul 9
  • Callahan B Silva taxonomic training data formatted for DADA2 (Silva version 132); 2018;.
  • Callahan BJ, Sankaran K, Fukuyama JA, et al. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res. 2016;5:1492.
  • Wright ES. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 2016;8:352.
  • Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592–593.
  • Palarea-Albaladejo J, Martín-Fernández JA. zCompositions — R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intellig Lab Syst. 2015;143:85–96.
  • Gloor GB, Wu JR, Pawlowsky-Glahn V, et al. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol. 2016;26:322–329.
  • Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.
  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
  • Oksanen J, Blanchet FG, Friendly M, et al. Vegan. Community Ecol Package. 2019; 10(631-637); 719.
  • Templ M, Hron K, Filzmoser P. robCompositions: an R-package for robust statistical analysis of compositional data. Compositional data analysis: theory and applications. John Wiley and Sons; 2011. 341–355. ISBN 9780470711354.
  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2020. Vienna, Austria.
  • Fox J, Weisberg S. An R Companion to Applied Regression; Third. Sage; 2019. Thousand Oaks, CA.
  • Areias C, Sampaio-Maia B, Pereira MDL, et al. Reduced salivary flow and colonization by mutans streptococci in children with Down syndrome. Clinics. 2012;67(9):1007–1011.
  • Chaushu S, Becker A, Chaushu G, et al. Stimulated parotid salivary flow rate in patients with Down syndrome. Spec Care Dentist. 2002;22:41–44.
  • Domingues NB, Mariusso MR, Tanaka MH, et al. Reduced salivary flow rate and high levels of oxidative stress in whole saliva of children with Down syndrome. Spec Care Dentist. 2017;37:269–276.
  • Down’s heart group dental care for children and adults with heart problems and down’s syndrome - Down’s Heart Group Available online: https://dhg.org.uk/information/dental-care/(accessed on 2020 Jul 7).
  • Dental PE. Care for the patient with down syndrome. Downs Syndr Res Pract. 1998;5:111–116.
  • Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46:1407–1417.
  • Lif Holgerson P, Öhman C, Rönnlund A, et al. Maturation of oral microbiota in children with or without dental caries. PLoS One. 2015;10(5):e0128534.
  • Torlakovic L, Klepac-Ceraj V, Ogaard B, et al. Microbial community succession on developing lesions on human enamel. J Oral Microbiol. 2012;4:16125.
  • Johansson I, Witkowska E, Kaveh B, et al. The microbiome in populations with a low and high prevalence of caries. J Dent Res. 2016;95:80–86.
  • Xu L, Chen X, Wang Y, et al. Dynamic alterations in salivary microbiota related to dental caries and age in preschool children with deciduous dentition: a 2-year follow-up study. Front Physiol. 2018;9:342.
  • Espinoza JL, Harkins DM, Torralba M, et al. Supragingival plaque microbiome ecology and functional potential in the context of health and disease. MBio. 2018;9(6). DOI:https://doi.org/10.1128/mBio.01631-18
  • Li Y, Zou C-G, Fu Y, et al. Oral microbial community typing of caries and pigment in primary dentition. BMC Genomics. 2016;17(1):558.
  • Chambers ST, Murdoch D, Morris A, et al. HACEK infective endocarditis: characteristics and outcomes from a large, multi-national cohort. PLoS One. 2013;8(5):e63181.
  • Dhotre SV, Davane MS, Nagoba BS. Periodontitis, bacteremia and infective endocarditis: a review study. Arch Pediatr Infect Dis. 2017;5. DOI:https://doi.org/10.5812/pedinfect.41067.
  • Carinci F, Martinelli M, Contaldo M, et al. Focus on periodontal disease and development of endocarditis. J Biol Regul Homeost Agents. 2018;32:143–147.
  • Ninomiya M, Hashimoto M, Yamanouchi K, et al. Relationship of oral conditions to the incidence of infective endocarditis in periodontitis patients with valvular heart disease: a cross-sectional study. Clin Oral Investig. 2020;24:833–840.
  • Down’s heart group infective endocarditis in children and adults with heart problems and down’s syndrome - Down’s Heart Group Available online: https://dhg.org.uk/information/infective-endocarditis/(accessed on 2020 Jul 7
  • Chen C. Distribution of a newly described species, Kingella oralis, in the human oral cavity. Oral Microbiol Immunol. 1996;11:425–427.
  • Ruhl S, Eidt A, Melzl H, et al. Probing of microbial biofilm communities for coadhesion partners. Appl Environ Microbiol. 2014;80:6583–6590.
  • Coelho ED, Arrais JP, Matos S, et al. Computational prediction of the human-microbial oral interactome. BMC Syst Biol. 2014;8:24.
  • Dewhirst FE, Chen C-KC, Paster BJ, et al. Phylogeny of species in the family neisseriaceae isolated from human dental plaque and description of kingella orale sp. nov. Int J Syst Bacteriol. 1993;43:490–499.
  • Lourenço TGB, Heller D, Silva-Boghossian CM, et al. Microbial signature profiles of periodontally healthy and diseased patients. J Clin Periodontol. 2014;41:1027–1036.
  • Han XY, Falsen E. Characterization of oral strains of Cardiobacterium valvarum and emended description of the organism. J Clin Microbiol. 2005;43:2370–2374.
  • Nørskov-Lauritsen N, Kilian M. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int J Syst Evol Microbiol. 2006;56:2135–2146.
  • Fine DH, Patil AG, Velusamy SK. Aggregatibacter actinomycetemcomitans (Aa) under the radar: myths and misunderstandings of Aa and its role in aggressive periodontitis. Front Immunol. 2019;10:728.
  • Vieira Colombo AP, Magalhães CB, Hartenbach FARR, et al. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb Pathog. 2016;94:27–34.
  • Fritschi BZ, Albert-Kiszely A, Persson GR. Staphylococcus aureus and other bacteria in untreated periodontitis. J Dent Res. 2008;87:589–593.
  • Colombo AV, Barbosa GM, Higashi D, et al. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with periodontitis and periodontal health. J Med Microbiol. 2013;62:1592–1600.
  • Loberto JCS, Martins, C.A. de P, Santos SSFD, et al. Staphylococcus spp. in the oral cavity and periodontal pockets of chronic periodontitis patients. Braz J Microbiol. 2004;35:64–68.
  • Dos Santos BRM, Demeda CF, da Silva EENF, et al. Prevalence of subgingival Staphylococcus at periodontally healthy and diseased sites. Braz Dent J. 2014;25:271–276.
  • Kim G-Y, Lee CH. Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis. J Periodontal Implant Sci. 2015;45:223–228.
  • Rajani R, Klein JL. Infective endocarditis: A contemporary update. Clin Med. 2020;20:31–35.
  • Kinane DF, Riggio MP, Walker KF, et al. Bacteraemia following periodontal procedures. J Clin Periodontol. 2005;32:708–713.
  • Lockhart PB, Brennan MT, Sasser HC, et al. Bacteremia associated with toothbrushing and dental extraction. Circulation. 2008;117:3118–3125.
  • Lockhart PB, Brennan MT, Thornhill M, et al. Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J Am Dent Assoc. 2009;140:1238–1244.
  • Kumar PS, Griffen AL, Moeschberger ML, et al. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005;43:3944–3955.
  • Kistler JO, Booth V, Bradshaw DJ, et al. Bacterial community development in experimental gingivitis. PLoS One. 2013;8:e71227.
  • Griffen AL, Beall CJ, Campbell JH, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. Isme J. 2012;6:1176–1185.
  • Al-Jebouri M. The Relationship between Periodontal Disease and Predisposing Factors. Tikrit J Dental Sci. 2016;4:68–80.
  • Ramanan P, Barreto JN, Osmon DR, et al. Rothia bacteremia: a 10-year experience at Mayo clinic, Rochester, Minnesota. J Clin Microbiol. 2014;52:3184–3189.
  • Al Soub H, El-Shafie SS, Al-Khal A-LM, et al. Gemella morbillorum endocarditis. Saudi Med J. 2003;24:1135–1137.
  • Akiyama K, Taniyasu N, Hirota J, et al. Recurrent aortic valve endocarditis caused by Gemella morbillorum–report of a case and review of the literature. Jpn Circ J. 2001;65:997–1000.
  • Ricaurte JC, Klein O, LaBombardi V, et al. Rothia dentocariosa endocarditis complicated by multiple intracranial hemorrhages. South Med J. 2001;94:438–440.
  • Fridman D, Chaudhry A, Makaryus J, et al. Rothia dentocariosa endocarditis: an especially rare case in a previously healthy man. Tex Heart Inst J. 2016;43:255–257.
  • Colombo APV, Bennet S, Cotton SL, et al. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J Periodontol. 2012;83:1279–1287.
  • Kataoka H, Taniguchi M, Fukamachi H, et al. Rothia dentocariosa induces TNF-alpha production in a TLR2-dependent manner. Pathog Dis. 2014;71:65–68.
  • Baker JL, Morton JT, Dinis M, et al. Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Res. 2020 Nov 25. doi: https://doi.org/10.1101/gr.265645.120.
  • Uranga CC, Arroyo P Jr, Duggan BM, et al. Commensal oral rothia mucilaginosa produces enterobactin, a metal-chelating siderophore. mSystems. 2020;5. DOI:https://doi.org/10.1128/mSystems.00161-20.
  • Shen S, Samaranayake LP, Yip H-K. Coaggregation profiles of the microflora from root surface caries lesions. Arch Oral Biol. 2005;50:23–32.
  • Chen C, Hemme C, Beleno J, et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. Isme J. 2018;12:1210–1224.
  • Camelo-Castillo AJ, Mira A, Pico A, et al. Subgingival microbiota in health compared to periodontitis and the influence of smoking. Front Microbiol. 2015;6:119.
  • Wolff B, Boutin S, Lorenz H-M, et al. FRI0698 Prevotella and alloprevotella species characterize the oral microbiome of early rheumatoid arthritis. Ann Rheum Dis. 2017;76:754.
  • Li Y, Tan X, Zhao X, et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral Oncol. 2020;107:104710.
  • Qu XM, Wu ZF, Pang BX, et al. From nitrate to nitric oxide: the role of salivary glands and oral bacteria. J Dent Res. 2016;95:1452–1456.
  • Henskens YM, van den Keijbus PA, Veerman EC, et al. Protein composition of whole and parotid saliva in healthy and periodontitis subjects. Determination of cystatins, albumin, amylase and IgA. J Periodontal Res. 1996;31:57–65.
  • Kerley CP, Kilbride E, Greally P, et al. Dietary nitrate acutely and markedly increased exhaled nitric oxide in a cystic fibrosis case. Clin Med Res. 2016;14:151–155.
  • Uchida-Fukuhara Y, Ekuni D, Islam MM, et al. Caries increment and salivary microbiome during university life: a prospective cohort study. Int J Environ Res Public Health. 2020;17:3713.
  • Kianoush N, Adler CJ, Nguyen K-AT, et al. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One. 2014;9:e92940.
  • Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–437.
  • Schoilew K, Ueffing H, Dalpke A, et al. Bacterial biofilm composition in healthy subjects with and without caries experience. J Oral Microbiol. 2019;11:1633194.
  • Li Y, Ge Y, Saxena D, et al. Genetic profiling of the oral microbiota associated with severe early-childhood caries. J Clin Microbiol. 2007;45:81–87.
  • Hurley E, Barrett MPJ, Kinirons M, et al. Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health. 2019;19:13.
  • Gross EL, Leys EJ, Gasparovich SR, et al. Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol. 2010;48:4121–4128.
  • Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8:263–271.
  • LaMonte MJ, Genco RJ, Zheng W, et al. Substantial differences in the subgingival microbiome measured by 16S metagenomics according to periodontitis status in older women. Dent J. 2018;6:58.
  • Abusleme L, Dupuy AK, Dutzan N, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. Isme J. 2013;7:1016–1025.
  • Genco RJ, LaMonte MJ, McSkimming DI, et al. The subgingival microbiome relationship to periodontal disease in older women. J Dent Res. 2019;98:975–984.
  • Takeshita T, Kageyama S, Furuta M, et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama study. Sci Rep. 2016;6:22164.
  • Baliga S, Muglikar S, Kale R. Salivary pH: A diagnostic biomarker. J Indian Soc Periodontol. 2013;17:461–465.
  • Prasad M, Toshi, Sehgal R, et al. Periodontal disease and salivary pH: case control study. Prasad Mayuri, Toshi, Sehgal Rajat, Mallik Manisha, Nabi Aaysha Tabinda, Singh Sneha. Periodontal disease and salivary pH: case control study. Int Arch Integr Med. 2019;6:1–6.
  • Davidovich E, Aframian DJ, Shapira J, et al. A comparison of the sialochemistry, oral pH, and oral health status of Down syndrome children to healthy children. Int J Paediatr Dent. 2010;20:235–241.
  • Siqueira WLJ, Nicolau J. Stimulated whole saliva components in children with Down syndrome. Spec Care Dentist. 2002;22:226–230.
  • Maranhão FCDA, Mendonça NM, Teixeira TC, et al. Molecular identification of candida species in the oral microbiota of individuals with down syndrome: a case-control study. Mycopathologia. 2020;185:537–543.
  • Brusca MI, Rosa A, Albaina O, et al. The impact of oral contraceptives on women’s periodontal health and the subgingival occurrence of aggressive periodontopathogens and Candida species. J Periodontol. 2010;81:1010–1018.
  • Urzúa B, Hermosilla G, Gamonal J, et al. Yeast diversity in the oral microbiota of subjects with periodontitis: candida albicans and Candida dubliniensis colonize the periodontal pockets. Med Mycol. 2008;46:783–793.
  • Jewtuchowicz VM, Mujica MT, Brusca MI, et al. Phenotypic and genotypic identification of Candida dubliniensis from subgingival sites in immunocompetent subjects in Argentina. Oral Microbiol Immunol. 2008;23:505–509.
  • McManus BA, Maguire R, Cashin PJ, et al. Enrichment of multilocus sequence typing clade 1 with oral Candida albicans isolates in patients with untreated periodontitis. J Clin Microbiol. 2012;50:3335–3344.
  • Naidu BV, Reginald BA. Quantification and correlation of oral candida with caries index among different age groups of school children: a case-control study. Ann Med Health Sci Res. 2016;6:80–84.
  • Lozano Moraga CP, Rodríguez Martínez GA, Lefimil Puente CA, et al. Prevalence of Candida albicans and carriage of Candida non-albicans in the saliva of preschool children, according to their caries status. Acta Odontol Scand. 2017;75:30–35.
  • Al-Ahmad A, Auschill TM, Dakhel R, et al. Prevalence of Candida albicans and Candida dubliniensis in caries-free and caries-active children in relation to the oral microbiota-a clinical study. Clin Oral Investig. 1963–1971;2016(20). DOI:https://doi.org/10.1007/s00784-015-1696-9
  • De-La-Torre J, Quindós G, Marcos-Arias C, et al. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? Rev Iberoam Micol. 2018;35:134–139.
  • Zhang X-B, Yu S-J, Yu J-X, et al. Retrospective analysis of epidemiology and prognostic factors for candidemia at a hospital in China, 2000-2009. Jpn J Infect Dis. 2012;65:510–515.
  • Krom BP, Kidwai S, Ten Cate JM. Candida and other fungal species: forgotten players of healthy oral microbiota. J Dent Res. 2014;93:445–451.
  • Nadig SD, Ashwathappa DT, Manjunath M, et al. A relationship between salivary flow rates and Candida counts in patients with xerostomia. J Oral Maxillofac Pathol. 2017;21:316.
  • Torres SR, Peixoto CB, Caldas DM, et al. Relationship between salivary flow rates and Candida counts in subjects with xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:149–154.
  • Wu T, Samaranayake LP. The expression of secreted aspartyl proteinases of Candida species in human whole saliva. J Med Microbiol. 1999;48:711–720.
  • Caroline de Abreu Brandi T, Portela MB, Lima PM, et al. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries. Microb Pathog. 2016;100:51–55.