2,044
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Prevalence, diversity and transferability of the Tn916-Tn1545 family ICE in oral streptococci

ORCID Icon, ORCID Icon & ORCID Icon
Article: 1896874 | Received 24 Sep 2020, Accepted 25 Feb 2021, Published online: 15 Mar 2021

References

  • Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207.
  • John R. Tagg, Philip A. Wescombe, John D. F. Hale, Jeremy P. Burton. (2019). Chapter 7 Streptococcus. In: Lactic Acid Bacteria: Microbiological and Functional Aspects (5th ed.). CRC Press (Boca Raton). https://doi.org/https://doi.org/10.1201/9780429057465.
  • Bruckner L, Gigliotti F. Viridans group streptococcal infections among children with cancer and the importance of emerging antibiotic resistance. Semin Pediatr Infect Dis.2006;17:153-60.
  • Shenep JL. Viridans-group streptococcal infections in immunocompromised hosts. Int J Antimicrob Agents. 2000;14(2):129–12.
  • Julius A, Subbiah U, Elango S. Designing universal primer for the identification of erythromycin and tetracycline resistance genes in oral Streptococci. Indian J Public Health Res Dev. 2019;10(11):2838.
  • Kim S-M, Kim HC, Lee S-WS. Characterization of antibiotic resistance determinants in oral biofilms. J Microbiol. 2011;49(4):595–602.
  • Roberts AP, Mullany P. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther. 2010;8(12):1441–1450.
  • Roberts AP, Mullany P. Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):856–871.
  • Seville LA, Patterson AJ, Scott KP, et al. Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microbial Drug Resist. 2009;15(3):159–166.
  • Sukumar S, Roberts AP, Martin FE, et al. Metagenomic insights into transferable antibiotic resistance in oral bacteria. J Dent Res. 2016;95(9):969–976.
  • Richards VP, Palmer SR, Pavinski Bitar PD, et al. Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol Evol. 2014;6(4):741–753. .
  • Burrus V, Waldor MK. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol. 2004;155(5):376–386.
  • Osborn AM, Böltner D. When phage, plasmids, and transposons collide: genomic islands, and conjugative-and mobilizable-transposons as a mosaic continuum. Plasmid. 2002;48(3):202–212.
  • Salyers AA, Shoemaker NB, Stevens AM, et al. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 1995;59(4):579–590.
  • Brouwer MS, Mullany P, Roberts AP. Characterization of the conjugative transposon Tn 6000 from Enterococcus casseliflavus 664.1 H1 (formerly Enterococcus faecium 664.1 H1). FEMS Microbiol Lett. 2010;309(1):71–76.
  • Roberts AP, Davis IJ, Seville L, et al. Characterization of the ends and target site of a novel tetracycline resistance-encoding conjugative transposon from Enterococcus faecium 664.1 H1. J Bacteriol. 2006;188(12):4356–4361.
  • Lancaster H, Roberts AP, Bedi R, et al. Characterization of Tn916S, a Tn916-like element containing the tetracycline resistance determinant tet (S). J Bacteriol. 2004;186(13):4395–4398.
  • McDougal LK, Tenover FC, Lee LN, et al. Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3872) in erythromycin-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1998;42(9):2312–2318. .
  • Del Grosso M, d’Abusco AS, Iannelli F, et al. Tn2009, a Tn916-like element containing mef (E) in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2004;48(6):2037–2042.
  • Del Grosso M, Camilli R, Libisch B, et al. New composite genetic element of the Tn916 family with dual macrolide resistance genes in a Streptococcus pneumoniae isolate belonging to clonal complex 271. Antimicrob Agents Chemother. 2009;53(3):1293–1294.
  • Franke AE, Clewell D. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of” conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol. 1981;145(1):494–502.
  • Ciric L, Mullany P, Roberts AP. Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: tn6087. J Antimicrob Chemother. 2011;66(10):2235–2239.
  • Reynolds LJ, Anjum MF, Roberts AP. Detection of a novel, and likely ancestral, Tn916-like element from a human saliva metagenomic library. Genes (Basel). 2020;11(5):548.
  • Roberts AP, Mullany P. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 2009;17(6):251–258.
  • Su Y, He P, Clewell D. Characterization of the tet (M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother. 1992;36(4):769–778.
  • 2018 NN-V. Usage of antimicrobial agents a nd occurrence of antimicrobial resistance in Norway. Tromso/Oslo; 2018. Report No.: 1502–2307
  • Almeida V, Azevedo J, Leal HF, et al. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. Plos One. 2020;15(9):e0239664.
  • Christensen TM, Sørensen TK Presence and levels of antibiotic resistance genes in saliva from dental students in Tromsø. Investigation of cfxA and erm (B) in Saliva Samples. UiT Norges arktiske universitet; 2016.
  • Davidovich NV, Galieva A, Davydova N, et al. Spectrum and resistance determinants of oral streptococci clinical isolates. Klin Lab Diagn. 2020;65(10):632–637. .
  • Smith HE, Wisselink HJ, Vecht U, et al. High-efficiency transformation and gene inactivation in Streptococcus suis type 2. Microbiology. 1995;141(1):181–188.
  • Bertrand S, Huys G, Yde M, et al. Detection and characterization of tet (M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J Med Microbiol. 2005;54(12):1151–1156. .
  • Doherty N, Trzcinski K, Pickerill P, et al. Genetic diversity of the tet (M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44(11):2979–2984.
  • Guardabassi L, Dijkshoorn L, Collard J-M, et al. Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J Med Microbiol. 2000;49(10):929–936.
  • Ciric L, Ellatif M, Sharma P, et al. Tn916-like elements from human, oral, commensal streptococci possess a variety of antibiotic and antiseptic resistance genes. Int J Antimicrob Agents. 2012;39(4):360. .
  • Salvà-Serra F, Svensson-Stadler L, Busquets A, et al. A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: a modified version of the Marmur procedure. 2018.
  • Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736.
  • Assefa S, Keane TM, Otto TD, et al. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics. 2009;25(15):1968–1969.
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069.
  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–1010.
  • Manganelli R, Romano L, Ricci S, et al. Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid. 1995;34(1):48–57.
  • Lunde TM, Roberts AP, Al-Haroni M. Determination of copy number and circularization ratio of Tn 916-Tn 1545 family of conjugative transposons in oral streptococci by droplet digital PCR. J Oral Microbiol. 2019;11(1):1552060.
  • Roberts AP, Mullany P, Wilson M. Gene transfer in bacterial biofilms. Methods Enzymol.2001;336:60-5.
  • Croucher NJ, Hanage WP, Harris SR, et al. Variable recombination dynamics during the emergence, transmission and ‘disarming’of a multidrug-resistant pneumococcal clone. BMC Biol. 2014;12(1):49. .
  • Tansirichaiya S, Rahman MA, Roberts AP. The transposon registry. Mob DNA. 2019;10(1):40.
  • Browne HP, Anvar SY, Frank J, et al. Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916. FEMS Microbiol Lett. 2015;362(3):1–4.
  • Horaud T, Delbos F. Viridans streptococci in infective endocarditis: species distribution and susceptibility to antibiotics. Eur Heart J. 1984;5(suppl_C):39–44.
  • Sun J-Q, Li L, Zhao K, et al. Molecular epidemiology of tetracycline resistance among viridians group streptococci isolated from various clinical specimens. 2017.
  • Roberts AP, Cheah G, Ready D, et al. Transfer of Tn916-like elements in microcosm dental plaques. Antimicrob Agents Chemother. 2001;45(10):2943–2946.
  • Fitzgerald GF, Clewell D. A conjugative transposon (Tn919) in Streptococcus sanguis. Infect Immun. 1985;47(2):415–420.
  • Marra D, Scott JR. Regulation of excision of the conjugative transposon Tn916. Mol Microbiol. 1999;31(2):609–621.
  • Wang H, Roberts AP, Mullany P. DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol Lett. 2000;192(1):15–20.
  • Poyart C, Quesne G, Acar P, et al. Characterization of the Tn916-like transposon Tn3872 in a strain of Abiotrophia defectiva (Streptococcus defectivus) causing sequential episodes of endocarditis in a child. Antimicrob Agents Chemother. 2000;44(3):790–793.
  • Lane D J. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester, United Kingdom: John Wiley and Sons; 1991. pp. 115–175.
  • Manganelli R, Ricci S, Pozzi G. Conjugative transposon Tn916: evidence for excision with formation of 5ʹ-protruding termini. J Bacteriol. 1996;178(19):5813–5816.
  • Roberts A, Browne H, Anvar S, et al. Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916. FEMS Microbiol Lett. 2014;362(3):1–4.