1,484
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Efficacy of FimA antibody and clindamycin in silkworm larvae stimulated with Porphyromonas gulae

, , , , , & show all
Article: 1914499 | Received 07 Oct 2020, Accepted 26 Feb 2021, Published online: 25 Apr 2021

References

  • Kato Y, Shirai M, Murakami M, et al. Molecular detection of human periodontal pathogens in oral swab specimens from dogs in Japan. J Vet Dent. 2011;28(2):84–13.
  • Hamada N, Takahashi Y, Watanabe K, et al. Molecular and antigenic similarities of the fimbrial major components between Porphyromonas gulae and P. gingivalis. Vet Microbiol. 2008;128(1–2):108–117.
  • Yamasaki Y, Nomura R, Nakano K, et al. Distribution and molecular characterization of Porphyromonas gulae carrying a new fimA genotype. Vet Microbiol. 2012a;161(1–2):196–205.
  • Iwashita N, Nomura R, Shirai M, et al. Identification and molecular characterization of Porphyromonas gulae fimA types among cat isolates. Vet Microbiol. 2019;229:100–109.
  • Inaba H, Nomura R, Kato Y, et al. Adhesion and invasion of gingival epithelial cells by Porphyromonas gulae. PLoS One. 2019;14(3):e0213309.
  • Holden JA, O’Brien-Simpson NM, Lenzo JC, et al. Porphyromonas gulae activates unprimed and gamma interferon-primed macrophages via the pattern recognition receptors toll-like receptor 2 (TLR2), TLR4, and NOD2. Infect Immun. 2017;85(9):e00282–17.
  • Nomura R, Shirai M, Kato Y, et al. Diversity of Fimbrillin among Porphyromonas gulae clinical isolates from Japanese Dogs. J Vet Med Sci. 2012;74(7):885–891.
  • Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the ‘red complex’, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2000;2005(38):72–122.
  • Casadevall A, Pirofski LA. Virulence factors and their mechanisms of action: the view from a damage-response framework. J Water Health. 2009;1(7 Suppl):S2–S18.
  • Klemm P, Schembri MA. Fimbrial surface display systems in bacteria: from vaccines to random libraries. Microbiology. 2000;146(12):3025–3032.
  • Nakagawa I, Amano A, Kuboniwa M, et al. Functional differences among FimA variants of Porphyromonas gingivalis and their effects on adhesion to and invasion of human epithelial cells. Infect Immun. 2002;70(1):277–285.
  • Burnette-Curley D, Wells V, Viscount H, et al. FimA, a major virulence factor associated with Streptococcus parasanguis endocarditis.. Infect Immun. 1995;63(12):4669–4674.
  • Amano A. Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol. 2003;74(1):90–96.
  • Musa HH, Zhang WJ, Duan XL, et al. The molecular adjuvant mC3d enhances the immunogenicity of FimA from type I fimbriae of Salmonella enterica serovar Enteritidis. J Microbiol Immunol Infect. 2014;47(1):57–62.
  • Amano A, Nakagawa I, Okahashi N, et al. Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J Periodontal Res. 2004;39(2):136–142.
  • Inaba H, Kawai S, Kato T, et al. Association between epithelial cell death and invasion by microspheres conjugated to Porphyromonas gingivalis vesicles with different types of fimbriae. Infect Immun. 2006;74(1):734–739.
  • Inaba H, Nakano K, Kato T, et al. Heterogenic virulence and related factors among clinical isolates of Porphyromonas gingivalis with type II fimbriae. Oral Microbiol Immunol. 2008;23(1):29–35.
  • Fournier D, Mouton C, Lapierre P, et al. Porphyromonas gulae sp. nov., an anaerobic, gram-negative coccobacillus from the gingival sulcus of various animal hosts.. Int J Syst Evol Microbiol. 2001;51(3):1179–1189.
  • Yamasaki Y, Nomura R, Nakano K, et al. Distribution of periodontopathic bacterial species in dogs and their owners. Arch Oral Biol. 2012b;57(9):1183–1188.
  • Nomura R, Inaba H, Yasuda H, et al. Inhibition of Porphyromonas gulae and periodontal disease in dogs by a combination of clindamycin and interferon alpha. Sci Rep. 2020;10(1):3113.
  • Matsumoto‐Nakano M, Tsuji M, Amano A, et al. Molecular interactions of alanine-rich and proline-rich regions of cell surface protein antigen c in Streptococcus mutans. Oral Microbiol Immunol. 2008;23(4):265–270.
  • Kaito C, Kurokawa K, Matsumoto Y, et al. Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol Microbiol. 2005;56(4):934–944.
  • Kaito C, Akimitsu N, Watanabe H, et al. Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog. 2002;32(4):183–190.
  • Senhorinho GN, Nakano V, Liu C, et al. Occurrence and antimicrobial susceptibility of Porphyromonas spp. and Fusobacterium spp. in dogs with and without periodontitis. Anaerobe. 2012;18(4):381–385.
  • Stephan B, Greife HA, Pridmore A, et al. Activity of pradofloxacin against porphyromonas and prevotella spp. implicated in periodontal disease in dogs: susceptibility test data from a European multicenter study. Antimicrob Agents Chemother. 2008;52(6):2149–2155.
  • Jeong SH, Nam Y, Jung H, et al. Author Correction: interrupting oral infection of Porphyromonas gingivalis with anti-FimA antibody attenuates bacterial dissemination to the arthritic joint and improves experimental arthritis. Exp Mol Med. 2018;50(8):113.
  • Kuhnert P, Boerlin P, Frey J. Target genes for virulence assessment of Escherichia coli isolates from water, food and the environment. FEMS Microbiol Rev. 2000;24(1):107–117.
  • Liu L, Zhao H, Zhang Y, et al. Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection. Virology. 2011;412(1):91–100.
  • Hoogland ICM, Houbolt C, Van Westerloo DJ, et al. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12(1):114.
  • Jiminez JA, Uwiera TC, Inglis DG, et al. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015;7:29.
  • Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;2020(368):1016–1020.
  • Hokamura K, Inaba H, Nakano K, et al. Molecular analysis of aortic intimal hyperplasia caused by Porphyromonas gingivalis infection in mice with endothelial damage. J Periodontal Res. 2010;45(3):337–344.
  • Normand R, Du W, Briller M, et al. Found in translateon: a machine model for mouse-to-human interence. Nat Methods. 2018;15(12):1067–1073.
  • Barnoy S, Gancz H, Zhu Y, et al. The Galleria Mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes. 2017;8(4):335–350.
  • Bastos PAD, De Costa JP, Vitorino R. A glimpse into the modulation of posttranslational modifications of human-colonizing bacteria. J Proteomics. 2017;152:254–275.
  • Mitchell CL, Latuszek CE, Vogel KR, et al. α-amanitin resistance in Drosophila melanogaster, A genome-wide association approach. PLoS One. 2017;12(2):e0173162.
  • Panthee S, Paudel A, Hamamoto H, et al. Advantages of the silkworm as an animal model for developing novel antimicrobial agents. Front Microbiol. 2017;8:373.
  • Kurokawa K, Kaito C, Sekimizu K. Two‐component signaling in the virulence of Staphylococcus aureus: a silkworm larvae‐pathogenic agent infection model of virulence. Methods Enzymol. 2007;422:233–244.
  • Miyashita A, Kizaki H, Kawasaki K, et al. Primed immune responses to gram-negative peptidoglycans confer infection resistance in silkworms. J Biol Chem. 2014;289(20):14412–14421.
  • Nishida S, Ishii M, Nishimiya Y, et al. Lactobacillus paraplantarum 11–1 isolated from rice bran pickles activated innate immunity and improved survival in a silkworm bacterial infection model. Front Microbiol. 2017;8:346.
  • Dhital S, Hamamoto H, Urai M, et al. Purification of innate immunostimulant from green tea using a silkworm muscle contraction assay. Drug Discov Ther. 2011;5(1):18–25.
  • Tanaka H, Sagisaka A, Fujita K, et al. Lipopolysaccharide elicits expression of immune‐related genes in the silkworm, Bombyx mori. Insect Mol Biol. 2009;18(1):71–75.
  • Casadevall A, Pirofski L. Host‐pathogen interactions: the attributes of virulence. J Infect Dis. 2001;184(3):337–344.
  • Firoved AM, Miller GF, Moayeri M, et al. Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice. Am J Pathol. 2005;167(5):1309–1320.
  • Johnson JR, Clermont O, Menard M, et al. Experimental mouse lethality of Escherichia coliisolates, in relation to accessory traits, phylogenetic group, and ecological source. J Infect Dis. 2006;194(8):1141–1150.
  • Hiyoshi H, Kodama T, Iida T, et al. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. IAI. 2010;78(4):1772–1780.
  • Nakagawa I, Inaba H, Yamamura T, et al. Invasion of epithelial cells and proteolysis of cellular focal adhesion components by distinct types of Porphyromonas gingivalis fimbriae. IAI. 2006;74(7):3773–3782.
  • Kato T, Uzawa A, Ishihara K. Inhibitory effect of galectin-3 on the cytokine-inducing activity of periodontopathic Aggregatibacter actinomycetemcomitans endotoxin in splenocytes derived from mice. FEMS Immunol Med Microbiol. 2009;57(1):40–45.
  • Inaba H, Yoshida S, Nomura R, et al. Porphyromonas gulae lipopolysaccharide elicits inflammatory responses through toll‐like receptor 2 and 4 in human gingivalis epithelial cells. CM. 2020;22:e13254.
  • Urmi AS, Inaba H, Nomura R, et al. Roles of Porphyromonas gulae proteases in bacterial and host cell biology. Cell Microbiol. 2021;24:e13312.
  • Miyazaki S, Natsumoto Y, Sekimizu K, et al. Evaluation of Staphylococcus aureus virulence factors using a silkworm model. FEMS Microbiol Lett. 2012;326(2):116–124.
  • Dunkle JA, Xiong L, Mankin AS, et al. [2010]. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci USA. 2010; 107(40):17152–17157.