1,926
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Novel lactotransferrin-derived synthetic peptides suppress cariogenic bacteria in vitro and arrest dental caries in vivo

[Novel lactotransferrin-derived anticaries peptides]

, , , , , & ORCID Icon show all
Article: 1943999 | Received 11 Mar 2021, Accepted 14 Jun 2021, Published online: 20 Jun 2021

References

  • Pitts NB NB, Zero DT DT, Marsh PD PD, et al. Dental caries. Nat Rev Dis Primers. 2017;3(1):17030.
  • Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90(3):294–12.
  • Abranches J, Zeng L, Kajfasz JK, et al. Biology of oral streptococci. Microbiol Spectr. 2018;6(5). DOI:https://doi.org/10.1128/microbiolspec.GPP3-0042-2018
  • Koo H, Falsetta ML, Klein MI, et al. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013;92(12):1065–1073.
  • Philip N, Suneja B, Walsh LJ, et al. Ecological approaches to dental caries prevention: paradigm shift or shibboleth?. Caries Res. 2018;52(1–2):153–165.
  • Pepperney A, Chikindas ML. Antibacterial peptides: opportunities for the prevention and treatment of dental caries. Probiotics Antimicrob Proteins. 2011;3(2):68.
  • Mai S, Mauger MT, Niu LN, et al. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater. 2017;49:16–35.
  • Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–3931.
  • Ouhara K, Komatsuzawa H, Yamada S, et al. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother. 2005;55(6):888–896.
  • Wang Y, Fan Y, Zhou Z, et al. De novo synthetic short antimicrobial peptides against cariogenic bacteria. Arch Oral Biol. 2017;80:41–50.
  • Wang Y, Zeng Y, Wang Y, et al. Antimicrobial peptide GH12 targets streptococcus mutans to arrest caries development in rats. J Oral Microbiol. 2018;11(1). DOI:https://doi.org/10.1080/20002297.2018.1549921
  • Niu JY, Yin IX, Wu WKK, et al. Antimicrobial peptides for the prevention and treatment of dental caries: a concise review. Arch Oral Biol. 2021;122:105022.
  • Azmi F, Skwarczynski M, Toth I, et al. Towards the development of synthetic antibiotics: designs inspired by natural antimicrobial peptides. Curr Med Chem. 2016;23(41):4610–4624.
  • Lynge Pedersen AM, Belstrom D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019;80(Suppl 1):S3–S12.
  • Siqueira WL, Custodio W, McDonald EE, et al. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91(12):1110–1118.
  • Luo J, Wang Y, Wang K, et al. Comparative proteomic analysis on acquired enamel pellicle at two time points in caries-susceptible and caries-free subjects. J Dent. 2020;94:103301.
  • Velliyagounder K, Bahdila D, Pawar S, et al. Role of lactoferrin and lactoferrin-derived peptides in oral and maxillofacial diseases. Oral Dis. 2019;25(3):652–669.
  • Bruni N, Capucchio MT, Biasibetti E, et al. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules. 2016;21(6). DOI:https://doi.org/10.3390/molecules21060752
  • Haney EF, Nazmi K, Lau F, et al. Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Biochimie. 2009;91(1):141–154.
  • Adao R, Nazmi K, Bolscher JG, et al. C- and N-truncated antimicrobial peptides from LFampin 265-284: biophysical versus microbiology results. J Pharm Bioallied Sci. 2011;3(1):60–69.
  • Behrendt R, White P, Offer J, et al. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci. 2016;22(1):4–27.
  • Wei H, Xie Z, Tan X, et al. Temporin-like peptides show antimicrobial and anti-biofilm activities against streptococcus mutans with reduced hemolysis. Molecules. 2020;25(23). DOI:https://doi.org/10.3390/molecules25235724
  • Ahn HS, Cho W, Kang SH, et al. Design and synthesis of novel antimicrobial peptides on the basis of alpha helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study. Peptides. 2006;27(4):640–648.
  • Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1(6):2876–2890.
  • Ding Y, Wang W, Fan M, et al. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides. 2014;52:61–67.
  • Ning H, Wang S, Li Y, et al. The cell structure damage and embden-meyerhof-parnas pathway inhibition of Listeria monocytogenes induced by glycinin basic peptide. Microb Pathog. 2021;152:104635.
  • Li F, Weir MD, Fouad AF, et al. Time-kill behaviour against eight bacterial species and cytotoxicity of antibacterial monomers. J Dent. 2013;41(10):881–891.
  • Costa EM, Silva S, Madureira AR, et al. A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism’s biofilm formation in vitro. Carbohydr Polym. 2014;101:1081–1086.
  • Min KR, Galvis A, Williams B, et al. Antibacterial and antibiofilm activities of a novel synthetic cyclic Lipopeptide against cariogenic streptococcus mutans UA159. Antimicrob Agents Chemother. 2017;61(8). DOI:https://doi.org/10.1128/AAC.00776-17
  • Liang J, Liang D, Liang Y, et al. Effects of a derivative of reutericin 6 and gassericin A on the biofilm of streptococcus mutans in vitro and caries prevention in vivo. Odontology. 2021;109(1):53–66.
  • Helmerhorst EJ, Reijnders IM, Hof WVT, et al. A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett. 1999;449(2–3):105–110.
  • Garcia SS, Blackledge MS, Michalek S, et al. Targeting of streptococcus mutans biofilms by a novel small molecule prevents dental caries and preserves the oral microbiome. J Dent Res. 2017;96(7):807–814.
  • N.C.R.R.G.W. Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Physiol. 2010;588(14): 2519–2521.
  • Hollands C. The animals (scientific procedures) act 1986. Lancet. 1986;2(8497):32–33.
  • Xu J, Miao C, Tian Z, et al. The effect of chemically modified Tetracycline-3 on the progression of dental caries in rats. Caries Res. 2018;52(4):297–302.
  • Rupf S, Merte K, Kneist S, et al. Comparison of different techniques of quantitative PCR for determination of streptococcus mutans counts in saliva samples. Oral Microbiol Immunol. 2003;18(1):50–53.
  • Keyes PH. Dental caries in the molar teeth of rats. II. A method for diagnosing and scoring several types of lesions simultaneously. J Dent Res. 1958;37(6):1088–1099.
  • Torres MDT, Sothiselvam S, Lu TK, et al. Peptide design principles for antimicrobial applications. J Mol Biol. 2019;431(18):3547–3567.
  • de Andrade FB, de Oliveira JC, Yoshie MT, et al. Antimicrobial activity and synergism of lactoferrin and lysozyme against cariogenic microorganisms. Braz Dent J. 2014;25(18):165–169.
  • Huo L, Zhang K, Ling J, et al. Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against streptococcus mutans. Arch Oral Biol. 2011;56(9):869–876.
  • Wiradharma N, Khoe U, Hauser CA, et al. Synthetic cationic amphiphilic alpha-helical peptides as antimicrobial agents. Biomaterials. 2011;32(8):2204–2212.
  • Tsutsumi A, Javkhlantugs N, Kira A, et al. Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. Biophys J. 2012;103(8):1735–1743.
  • Cruz J, Ortiz C, Guzman F, et al. Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic Escherichia coli. Biopolymers. 2014;101(4):319–328.
  • Takahashi D, Shukla SK, Prakash O, et al. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010;92(9):1236–1241.
  • Arias M, Vogel HJ. Fluorescence and absorbance spectroscopy methods to study membrane perturbations by antimicrobial host defense peptides. Methods Mol Biol. 2017;1548:141–157.
  • Sales-Campos H, Soares SC, Oliveira CJF, et al. An introduction of the role of probiotics in human infections and autoimmune diseases. Crit Rev Microbiol. 2019;45(4):413–432.
  • Scharnow AM, Solinski AE, Wuest WM, et al. Targeting S. mutans biofilms: a perspective on preventing dental caries. Medchemcomm. 2019;10(7):1057–1067.
  • Hawrani A, Howe RA, Walsh TR, et al. Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem. 2008;283(27):18636–18645.
  • Chen L, Jia L, Zhang Q, et al. A novel antimicrobial peptide against dental-caries-associated bacteria. Anaerobe. 2017;47:165–172.
  • Jiang W, Wang Y, Luo J, et al. Effects of antimicrobial peptide GH12 on the cariogenic properties and composition of a cariogenic multispecies biofilm. Appl Environ Microbiol. 2018;84(24). DOI:https://doi.org/10.1128/AEM.01423-18
  • Marsh PD, Head DA, Devine DA, et al. Ecological approaches to oral biofilms: control without killing. Caries Res. 2015;49(Suppl 1):46–54.
  • Jiang W, Wang Y, Luo J, et al. Antimicrobial peptide GH12 prevents dental caries by regulating dental plaque microbiota. Appl Environ Microbiol. 2020;86(14). DOI:https://doi.org/10.1128/AEM.00527-20
  • Raheem N, Straus SK. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front Microbiol. 2019;10:2866.
  • Moussa DG, Aparicio C. Targeting the oral plaque microbiome with immobilized anti-biofilm peptides at tooth-restoration interfaces. PLoS One. 2020;15(7):e0235283.
  • Moussa DG, Kirihara JA, Ye Z, et al. Dentin priming with amphipathic antimicrobial peptides. J Dent Res. 2019;98(10):1112–1121.