1,429
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Proteomic response in Streptococcus gordonii DL1 biofilm cells during attachment to salivary MUC5B

ORCID Icon, , , &
Article: 1967636 | Received 04 Jul 2021, Accepted 10 Aug 2021, Published online: 23 Aug 2021

References

  • Sicard JF, Le Bihan G, Vogeleer P, et al. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017 Sep 5;7:387.
  • Marsh PD, Do T, Beighton D, et al. Influence of saliva on the oral microbiota. Periodontol 2000. 2016 Feb;70(1):80–14.
  • Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017 Mar;44(Suppl 18):S12–S22.
  • Park OJ, Kwon Y, Park C, et al. Streptococcus gordonii: pathogenesis and host response to its cell wall components. Microorganisms. 2020 Nov 24;8(12):1852.
  • Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am. 2010 Jul;54(3):441–454.
  • Marsh PD. In sickness and in health-what does the oral microbiome mean to us? an ecological perspective. Adv Dent Res. 2018 Feb;29(1):60–65.
  • Wickström C, Davies JR, Eriksen GV, et al. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J. 1998 Sep 15;334(Pt 3):685–693. (Pt 3).
  • Wickström C, Svensäter G. Salivary gel-forming mucin MUC5B–a nutrient for dental plaque bacteria. Oral Microbiol Immunol. 2008 Jun;23(3):177–182.
  • Wickström C, Chávez de Paz L, JR D, et al. Surface-associated MUC5B mucins promote protease activity in lactobacillus fermentum biofilms. BMC Oral Health. 2013 Sep 8;13:43.
  • Thornton DJ, Khan N, Mehrotra R, et al. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology. 1999 Mar;9(3):293–302.
  • Bradshaw DJ, Homer KA, Marsh PD, et al. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology (Reading). 1994 Dec;140(Pt 12):3407–3412.
  • Wickström C, Herzberg MC, Beighton D, et al. Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology (Reading). 2009 Sep;155(9):2866–2872.
  • O’Toole G, Kaplan HB, Kolter R, et al. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54(1):49–79.
  • Beloin C, Roux A, Ghigo JM, et al. Escherichia coli biofilms. Curr Top Microbiol Immunol. 2008;322:249–289.
  • Erdmann J, Thöming JG, Pohl S, et al. The core proteome of biofilm-grown clinical pseudomonas aeruginosa isolates. Cells. 2019 Sep 23;8(10):1129.
  • Svensäter G, Welin J, Wilkins JC, et al. Protein expression by planktonic and biofilm cells of streptococcus mutans. FEMS Microbiol Lett. 2001 Nov 27;205(1):139–146.
  • Davies JR, Svensäter G, Herzberg MC, et al. Identification of novel LPXTG-linked surface proteins from streptococcus gordonii. Microbiology (Reading). 2009 Jun;155(6):1977–1988.
  • Davies JR, Wickström C, Thornton DJ, et al. Gel-forming and cell-associated mucins – preparation for structural and functional studies. In: McGuckin MA, Thornton DJ, editors. Mucins: methods and Protocols, Methods in Molecular Biology. Vol. 842. © Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013, USA; 2012. p. 27–47. doi: https://doi.org/10.1007/978-1-61779-513-8_2.
  • Brown JL, Johnston W, Delaney C, et al. Polymicrobial oral biofilm models: simplifying the complex. J Med Microbiol. 2019 Nov;68(11):1573–1584.
  • Busscher HJ, van der Mei HC. Microbial adhesion in flow displacement systems. Clin Microbiol Rev. 2006 Jan;19(1):127–141.
  • Stoodley P, Cargo R, Rupp CJ, et al. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol. 2002 Dec;29(6):361–367.
  • Stewart PS. Mini-review: convection around biofilms. Biofouling. 2012;28(2):187–198.
  • Welin-Neilands J, Svensäter G. Acid tolerance of biofilm cells of streptococcus mutans. Appl Environ Microbiol. 2007 Sep;73(17):5633–5638.
  • Robertsson C, Svensäter G, Blum Z, et al. Intracellular Ser/Thr/Tyr phosphoproteome of the oral commensal streptococcus gordonii DL1. BMC Microbiol. 2020 Sep 14;20(1):280.
  • Björklund M, Ouwehand AC, Forssten SD, et al. Improved artificial saliva for studying the cariogenic effect of carbohydrates. Curr Microbiol. 2011 Jul;63(1):46–49.
  • Willforss J, Chawade A, Levander F, et al. NormalyzerDE: online tool for improved normalization of omics expression data and high-sensitivity differential expression analysis. J Proteome Res. 2019 Feb 1;18(2):732–740.
  • UniProt [internet]. 2002-2021. [ cited 2021 06 30]. Available from: uniprot.org.
  • Cox J, Hein MY, Luber CA, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed maxLFQ. Mol Cell Proteomics. 2014 Sep;13(9):2513–2526.
  • Tyanova S, Temu T, Sinitcyn P, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016 Sep;13(9):731–740.
  • Yu SH, Kyriakidou P, Cox J, et al. Isobaric matching between runs and novel PSM-level normalization in maxQuant strongly improve reporter ion-based quantification. J Proteome Res. 2020 Oct 2;19(10):3945–3954.
  • Chávez de Paz LE. Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol. 2009 Mar;75(6):1734–1739.
  • Smith PM, Atkins CA. Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol. 2002 Mar;128(3):793–802.
  • Rajagopal L, Vo A, Silvestroni A, et al. Regulation of purine biosynthesis by a eukaryotic-type kinase in streptococcus agalactiae. Mol Microbiol. 2005 Jun;56(5):1329–1346.
  • Chaudhuri B, Paju S, Haase EM, et al. Amylase-binding protein B of streptococcus gordonii is an extracellular dipeptidyl-peptidase. Infect Immun. 2008 Oct;76(10):4530–4537.
  • Tanzer JM, Grant L, Thompson A, et al. Amylase-binding proteins A (AbpA) and B (AbpB) differentially affect colonization of rats’ teeth by streptococcus gordonii. Microbiology (Reading). 2003 Sep;149(Pt 9):2653–2660.
  • Russell RR, Aduse-Opoku J, Sutcliffe IC, et al. A binding protein-dependent transport system in streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem. 1992 Mar 5;267(7):4631–4637.
  • Tao L, Sutcliffe IC, Russell RR, et al. Transport of sugars, including sucrose, by the msm transport system of streptococcus mutans. J Dent Res. 1993 Oct;72(10):1386–1390.
  • Cvitkovitch DG, Boyd DA, Hamilton IR, et al. Regulation of sugar uptake via the multiple sugar metabolism operon by the phosphoenolpyruvate-dependent sugar phosphotransferase transport system of streptococcus mutans. Dev Biol Stand. 1995;85:351–356.
  • Takahashi N. Oral microbiome metabolism: from “Who Are They?” to “What Are They Doing?”. J Dent Res. 2015 Dec;94(12):1628–1637.
  • Mobley HL, Island MD, Hausinger RP, et al. Molecular biology of microbial ureases. Microbiol Rev. 1995 Sep;59(3):451–480.
  • Chen YY, Clancy KA, Burne RA, et al. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect Immun. 1996 Feb;64(2):585–592.
  • Len ACL, Harty DWS, Jacques NA, et al. Proteome analysis of streptococcus mutans metabolic phenotype during acid tolerance. Microbiology (Reading). 2004 May;150(Pt 5):1353–1366.
  • Zhang A, Chen J, Gong T, et al. Deletion of csn2 gene affects acid tolerance and exopolysaccharide synthesis in streptococcus mutans. Mol Oral Microbiol. 2020 Oct;35(5):211–221.
  • Diaz PI, Valm AM. Microbial interactions in oral communities mediate emergent biofilm properties. J Dent Res. 2020 Jan;99(1):18–25.
  • Liu Y, Hu T, Jiang D, et al. Regulation of urease gene of actinomyces naeslundii in biofilms in response to environmental factors. FEMS Microbiol Lett. 2008 Jan;278(2):157–163.
  • Liy Y, Dan J, Tao H, et al. Regulation of urease expression of actinomyces naeslundii in biofilms in response to pH and carbohydrate. Oral Microbiol Immunol. 2008 Aug;23(4):315–319. Erratum in: Oral Microbiol Immunol.2010 Oct; 25(5):368.Yaling, L [corrected to Liy, Y].
  • Karamanos Y, Bourgerie S, Barreaud JP, et al. Are there biological functions for bacterial endo-N-acetyl-beta-D-glucosaminidases?. Res Microbiol. 1995 Jul-Aug;146(6):437–443.
  • Byers HL, Tarelli E, Homer KA, et al. Sequential deglycosylation and utilization of the N-linked, complex-type glycans of human alpha1-acid glycoprotein mediates growth of streptococcus oralis. Glycobiology. 1999 May;9(5):469–479.
  • Yang J, Zhou Y, Zhang L, et al. Cell surface glycoside hydrolases of streptococcus gordonii promote growth in Saliva. Appl Environ Microbiol. 2016 Aug 15;82(17):5278–5286.
  • Clarke VA, Platt N, Butters TD, et al. Cloning and expression of the beta-N-acetylglucosaminidase gene from streptococcus pneumoniae. Generation of truncated enzymes with modified aglycon specificity. J Biol Chem. 1995 Apr 14;270(15):8805–8814.
  • Robb M, JK H, SA W, et al. Molecular characterization of N-glycan degradation and transport in streptococcus pneumoniae and its contribution to virulence. PLoS Pathog. 2017 Jan 5;13(1):e1006090.
  • Fan SQ, Huang W, Wang LX, et al. Remarkable transglycosylation activity of glycosynthase mutants of endo-D, an endo-β-N-acetylglucosaminidase from streptococcus pneumoniae. J Biol Chem. 2012 Mar 30;287(14):11272–11281.
  • Collin M, Olsén A. EndoS, a novel secreted protein from streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 2001 Jun 15;20(12):3046–3055.
  • Collin M, Svensson MD, Sjöholm AG, et al. EndoS and SpeB from streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect Immun. 2002 Dec;70(12):6646–6651.
  • Wang B, Kuramitsu HK. Inducible antisense RNA expression in the characterization of gene functions in streptococcus mutans. Infect Immun. 2005 Jun;73(6):3568–3576.
  • Favrot L, Blanchard JS, Vergnolle O, et al. Bacterial GCN5-Related N-Acetyltransferases: from resistance to regulation. Biochemistry. 2016 Feb 23;55(7):989–1002.
  • Aksnes H, Ree R, Arnesen T, et al. Co-translational, post-translational, and non-catalytic roles of N-Terminal acetyltransferases. Mol Cell. 2019 Mar 21;73(6):1097–1114.
  • Pei X, Liu M, Zhou H, et al. Screening for phagocytosis resistance-related genes via a transposon mutant library of streptococcus suis serotype 2. Virulence. 2020 Dec;;11(1):825–838.
  • Ramos JL, Martínez-Bueno M, Molina-Henares AJ, et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005 Jun;69(2):326–356.
  • Holden HM, Rayment I, Thoden JB, et al. Structure and function of enzymes of the leloir pathway for galactose metabolism. J Biol Chem. 2003 Nov 7;278(45):43885–43888.
  • Yang J, Yoshida Y, Cisar JO, et al. Genetic basis of coaggregation receptor polysaccharide biosynthesis in streptococcus sanguinis and related species. Mol Oral Microbiol. 2014 Feb;29(1):24–31.
  • Plumbridge JA, Cochet O, Souza JM, et al. Coordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12. J Bacteriol. 1993 Aug;175(16):4951–4956.
  • Cote CK, Cvitkovitch D, Bleiweis AS, et al. A novel beta-glucoside-specific PTS locus from streptococcus mutans that is not inhibited by glucose. Microbiology (Reading). 2000 Jul;146(Pt 7):1555–1563.
  • Saier MH, Chauvaux S, Cook GM, et al. Catabolite repression and inducer control in gram-positive bacteria. Microbiology (Reading). 1996 Feb;142(Pt 2):217–230.
  • Cote CK, Honeyman AL. The transcriptional regulation of the streptococcus mutans bgl regulon. Oral Microbiol Immunol. 2002 Feb;17(1):1–8.
  • Cote CK, Honeyman AL. The licT protein acts as both a positive and a negative regulator of loci within the bgl regulon of streptococcus mutans. Microbiology (Reading). 2003 May;149(Pt 5):1333–1340.
  • Braza RE, Silver AB, Sundar GS, et al. Phosphotransferase system uptake and metabolism of the β-Glucoside salicin impact group A streptococcal bloodstream survival and soft tissue infection. Infect Immun. 2020 Sep 18;88(10):e00346–20.
  • Terra VS, Zhi X, Kahya HF, et al. Pneumococcal 6-Phospho-β-Glucosidase (BglA3) is involved in virulence and nutrient metabolism. Infect Immun. 2015 Nov 2;84(1):286–292.