6,886
Views
1
CrossRef citations to date
0
Altmetric
Original Research Article

Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective

, , , &
Article: 1300450 | Received 17 Nov 2016, Accepted 23 Dec 2016, Published online: 10 Apr 2017

References

  • Fox AD , Ebbinge BS , Mitchell C , et al. Current estimates of goose population sizes in Western Europe, a gap analysis and an assessment of trends. Ornis Svec. 2010;20:1–21.
  • U.S. Fish and Wildlife Service . Waterfowl population status, 2015. Washington (DC): U.S. Department of the Interior; 2015.
  • Fox AD , Elmberg J , Tombre IM , et al. Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management. Biol Rev. online 2016. DOI 10.1111/brv.12258.
  • Dessborn L , Hessel R , Elmberg J. Geese as vectors of nitrogen and phosphorous to freshwater systems. Inland Waters. 2016;6:111–122.
  • Gorham TJ , Lee J . Pathogen loading from Canada geese in freshwater: potential risks to human health through recreational water exposure. Zoonoses Public Health. 2016;63:177–190.
  • Harris MT , Brown JD , Goekjian VH , et al. Canada geese and the epidemiology of avian influenza viruses. J Wildlife Dis. 2010;46:981–987.
  • Tsiodras S , Kelesidis T , Kelesidis I , et al. Human infections associated with wild birds. J Infection. 2008;56:83–98.
  • Kear J . Man and wildfowl. London: T & AD Poyser; 1990.
  • Lerner H , Berg C . The concept of health in One Health and some practical implications for research and education: what is One Health? Infect Ecol Epidemiol. 2015;5:25300.
  • Lerner H . The philosophical roots of the “one medicine” movement: an analysis of some relevant ideas by Rudolf Virchow and Calvin Schwabe with their modern implications. Studia Philosophica Estonica. 2013;6:97–109.
  • Wobeser GA . Diseases of wild waterfowl. New York (NY): Plenum Press; 1997.
  • Wiethoelter AK , Beltrán-Alcrudo D , Kock R , et al. Global trends in infectious diseases at the wildlife-livestock interface. Proc Natl Acad Sci USA. 2015;112:9662–9667.
  • Hess JC , Paré JA . Viruses of waterfowl. Semin Avian Exot Pet. 2004;13:176–183.
  • Leighton FA , Heckert RA . Newcastle disease and related avian paramyxoviruses. In: Thomas NJ , Hunter DB , Atkinson CT , editors. Infectious diseases of wild birds. Oxford (UK): Blackwell Publishing; 2007. p. 3–17.
  • Alexander DJ . Ecology and epidemiology of newcastle disease. In: Capua I , Alexander DJ , editors. Avian influenza and newcastle disease. Milan: Springer Verlag Italia; 2009. p. 19–22.
  • Kuiken T . Review of newcastle disease in cormorants. Waterbirds. 1999;22:333–347.
  • Simpson VR . Wild animals as reservoirs of infectious diseases in the UK. Vet J. 2002;163:128–146.
  • Khan MI . Newcastle disease. In: Beran GW , editor. Handbook of zoonoses, section B: viral diseases. 2nd ed. Boca Raton (FL): CRC Press; 1994. p. 473–481.
  • Graves IL . Newcastle disease viruses in birds in the Atlantic flyway: isolations, haemagglutination-inhibition and elution-inhibition antibody profiles. Vet Res. 1996;27:209–218.
  • Hlinak A , Müller T , Kramer M , et al. Serological survey of viral pathogens in bean and white-fronted geese from Germany. J Wildlife Dis. 1998;34:479–486.
  • Pedersen K , Marks DR , Arsnoe DM , et al. Antibody prevalence of select arboviruses in mute swans (Cygnus olor) in the great lakes region and Atlantic Coast of the United States. Am J Trop Med Hyg. 2014;91:1247–1249.
  • Muzyka D , Pantin-Jackwood M , Stegniy B , et al. Wild bird surveillance for avian paramyxoviruses in the Azov-Black Sea region of Ukraine (2006 to 2011) reveals epidemiological connections with Europe and Africa. Appl Environ Microb. 2014;80:5427–5438.
  • Bolte AL , Lutz W , Kaleta EF . Investigations on the occurrence of ortho- and paramyxovirus infections among free living greylag geese (Anser anser Linne, 1758). Z Jagdwiss. 1997;43:48–55.
  • Bönner BM , Lutz W , Jäger S , et al. Do Canada geese (Branta canadensis Linnaeus, 1758) carry infectious agents for birds and man? Eur J Wildl Res. 2004;50:78–84.
  • Kruckenberg H , Muller T , Freuling C , et al. Serological and virological survey and resighting of marked wild geese in Germany. Eur J Wildl Res. 2011;57:1025–1032.
  • Lillehaug A , Monceyron Jonassen C , Bergsjø B , et al. Screening of feral pigeon (Colomba livia), mallard (Anas platyrhynchos) and graylag goose (Anser anser) populations for Campylobacter spp., Salmonella spp., avian influenza virus and avian paramyxovirus. Acta Vet Scand. 2005;46:193–202.
  • Lindh E , Huovilainen A , Rätti O , et al. Orthomyxo-, paramyxo- and flavivirus infections in wild waterfowl in Finland. Virol J. 2008;5:35.
  • Vickers ML , Hanson RP . Newcastle disease virus in waterfowl in Wisconsin. J Wildlife Dis. 1982;18:149–158.
  • Wille M , Avril A , Tolf C , et al. Temporal dynamics, diversity, and interplay in three components of the virodiversity of a Mallard population: influenza A virus, avian paramyxovirus and avian coronavirus. Infect Genet Evol. 2015;29:129–137.
  • Takakuwa H , Ito T , Takada A , et al. Potentially virulent Newcastle disease viruses are maintained in migratory waterfowl populations. Jpn J Vet Res. 1998;45:207–215.
  • Müller T , Hlinak A , Mühle RU , et al. A descriptive analysis of the potential association between migration patterns of bean and white-fronted geese and the occurrence of Newcastle disease outbreaks in domestic birds. Avian Dis. 1999;43:315–319.
  • Shengqing Y , Shinya K , Otsuki K , et al. Isolation of myxoviruses from migratory waterfowls in San-in district, western Japan in winters of 1997-2000. J Vet Med Sci. 2002;64:1049–1052.
  • Kim LM , King DJ , Curry PE , et al. Phylogenetic diversity among low-virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. J Virol. 2007;81(22):12641–12653.
  • Tsunekuni R , Ito H , Otsuki K , et al. Genetic comparisons between lentogenic Newcastle disease virus isolated from waterfowl and velogenic variants. Virus Genes. 2010;40:252–255.
  • Ayala AJ , Dimitrov KM , Becker CR , et al. Presence of vaccine-derived Newcastle disease viruses in wild birds. PLoS One. 2016;11(9):e0162484.
  • Hansen WR , Gough RE . Duck plague. In: Thomas NJ , Hunter DB , Atkinson CT , editors. Infectious diseases of wild birds. Oxford (UK): Blackwell Publishing; 2007. p. 87–107.
  • Pearson GL , Cassidy DR . Perspectives on the diagnosis, epizootiology, and control of the 1973 duck plague epizootic in wild waterfowl at Lake Andes, South Dakota. J Wildlife Dis. 1997;33:681–705.
  • Woźniakowski G , Samorek-Salamonowicz E . First survey of the occurrence of duck enteritis virus (DEV) in free-ranging Polish water birds. Arch Virol. 2014;159:1439–1444.
  • Hayes CG . West Nile Virus: Uganda, 1937, to New York City, 1999. Ann NY Acad Sci. 2001;951:25–37.
  • Caffrey C , Smith SCR , Weston TJ . West Nile virus devastates an American crow population. Condor. 2005;107:128–132.
  • Murray KO , Ruktanonchai D , Hesalroad D , et al. West Nile virus, Texas, USA, 2012. Emerg Infect Dis. 2013;19:1836–1838.
  • Komar N . West Nile virus: epidemiology and ecology in North America. Adv Virus Res. 2003;61:185–234.
  • Malkinson M , Banet C , Weisman Y , et al. Introduction of West Nile virus in the Middle East by migrating white storks. Emerg Infect Dis. 2002;8:392–397.
  • Yeh JY , Park JY , Ostlund EN . Serologic evidence of West Nile Virus in wild ducks captured in major inland resting sites for migratory waterfowl in South Korea. Vet Microbiol. 2011;154:96–103.
  • Komar N , Panella NA , Burns JE , et al. Serologic evidence for West Nile virus infection in birds in the New York City vicinity during an outbreak in 1999. Emerg Infect Dis. 2001;7:621–625.
  • Petrovic T , Blazquez AB , Lupulovic D , et al. Monitoring West Nile virus (WNV) infection in wild birds in Serbia during 2012: first isolation and characterisation of WNV strains from Serbia. Euro Surveill. 2013;18:7–14.
  • Jourdain E , Olsen B , Lundkvist A , et al. Surveillance for West Nile virus in wild birds from northern Europe. Vector Borne Zoonotic Dis. 2011;11:77–79.
  • Linke S , Niedrig M , Kaiser A , et al. Serologic evidence of West Nile virus infections in wild birds captured in Germany. Am J Trop Med Hyg. 2007;77:358–364.
  • Hubálek Z , Wegner E , Halouzka J , et al. Serologic survey of potential vertebrate hosts for West Nile virus in Poland. Viral Immunol. 2008;21(2):247–253.
  • Epstein P . West Nile Virus and climate. J Urban Health. 2001;78:367–371.
  • Medlock JM , Hansford KM , Versteirt V , et al. An entomological review of invasive mosquitoes in Europe. Bull Entomol Res. 2015;105:637–663.
  • Tsai TF , Popovici F , Cernescu C , et al. West Nile encephalitis epidemic in southeastern Romania. Lancet. 1998;352:767–771.
  • Platonov AE , Shipulin GA , Shipulina OY , et al. Outbreak of West Nile virus infection, Volgograd region, Russia, 1999. Emerg Infect Dis. 2001;7(1):128–132.
  • Olsen B , Munster VJ , Wallensten A , et al. Global patterns of influenza A virus in wild birds. Science. 2006;312:384–388.
  • Munster VJ , Baas C , Lexmond P , et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathogens. 2007;3(5):e61.
  • Latorre-Margalef N , Tolf C , Grosbois V , et al. Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe. P Roy Soc Lond B Bio. 2014;281(1781):20140098.
  • Alexander DJ , Capua I , Brown IH . Avian influenza viruses and influenza in humans. In: Schrijver RS , Koch G , editors. Avian influenza – prevention and control. Dordrecht (NL): Springer; 2005. p. 1–8.
  • van Reil D , Munster VJ , de Wit E , et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol. 2007;171(4):1215–1223.
  • Kuiken T , Riteau B , Fouchier RA , et al. Pathogenesis of influenza virus infections: the good, the bad and the ugly. Curr Opin Virol. 2012;2(3):276–286.
  • Verhagen JH , Herfst S , Fouchier RA . Infectious disease. How a virus travels the world. Science. 2015;347(6222):616–617.
  • Gaidet N , Cappelle J , Takekawa JY , et al. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry. J Appl Ecol. 2010;47:1147–1157.
  • Krauss S , Stucker KM , Schobel SA , et al. Long-term surveillance of H7 influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the precursors of highly pathogenic strains in domestic poultry? Emerg Microbes Infect. 2015;4:e35.
  • Global Consortium for H5N8 and Related Influenza Viruses . Role for migratory wild birds in the global spread of avian influenza H5N8. Science. 2016;354(6309):213–217.
  • Pasick J , Berhane Y , Embury-Hyatt C , et al. Susceptibility of Canada Geese (Branta canadensis) to Highly Pathogenic Avian Influenza Virus (H5N1). Emerg Infect Dis. 2007;13:1821–1827.
  • Hars J , Ruette S , Benmergui M , et al. The epidemiology of the highly pathogenic H5N1 avian influenza in Mute Swan (Cygnus olor) and other Anatidae in the Dombes region (France) 2006. J Wildl Dis. 2008;44(4):811–823.
  • Kalthoff D , Breithaupt A , Teifke JP , et al. Highly pathogenic Avian Influenza Virus (H5N1) in experimentally infected adult Mute Swans. Emerg Infect Dis. 2008;14:1267–1270.
  • Bi Y , Zhang Z , Liu W , et al. Highly pathogenic influenza A (H5N1) virus struck migratory birds in China in 2015. Sci Rep. 2015;5:12986.
  • Liu J , Xiao H , Lei F , et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science. 2005;309(5738):1206.
  • Lambrecht B , Marche S , Houdart P , et al. Impact of age, season, and flowing vs. stagnant water habitat on avian influenza prevalence in Mute Swan (Cygnus olor) in Belgium. Avian Dis. 2016;60(1 Suppl):322–328.
  • Wallensten A , Munster VJ , Latorre-Margalef NL , et al. Surveillance of Influenza A virus in migratory waterfowl in northern Europe. Emerg Infect Dis. 2007;13:404–411.
  • Pannwitz G , Wolf C , Harder T . Active surveillance for avian influenza virus infection in wild birds by analysis of avian fecal samples from the environment. J Wildlife Dis. 2009;45:512–518.
  • Ely CR , Hall JS , Schmutz JA , et al. Evidence that life history characteristics of wild birds influence infection and exposure to Influenza A Viruses. PLoS One. 2013;8:e57614.
  • Kocan AA , Shaw MG , Morgan PM . Some parasitic and infectious diseases in waterfowl in Oklahoma. J Wildlife Dis. 1979;15:137–141.
  • Hoye BJ , Munster VJ , Nishiura H , et al. Reconstructing an annual cycle of interaction: natural infection and antibody dynamics to avian influenza along a migratory flyway. Oikos. 2011;120:748–755.
  • Van Gils JA , Munster VJ , Radersma R , et al. Hampered foraging and migratory performance in swans infected with low-pathogenic Avian Influenza A Virus. PLoS One. 2007;2:e184.
  • Kleijn D , Munster VJ , Ebbinge BS , et al. Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese in their winter staging areas. Proc R Soc Lond B Biol Sci. 2010;277:2041–2048.
  • Lee DH , Park JK , Yuk SS , et al. Complete genome sequence of a natural reassortant H9N2 avian influenza virus found in bean goose (Anser fabalis): direct evidence for virus exchange between Korea and China via wild birds. Infect Genet Evol. 2014;26:250–254.
  • Fereidouni SR , Starick E , Beer M , et al. Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS One. 2009;4(8):e6706.
  • Berhane Y , Leith M , Embury-Hyatt C , et al. Studying possible cross-protection of Canada Geese preexposed to North American low pathogenicity avian influenza virus strains (H3N8, H4N6, and H5N2) against an H5N1 a highly pathogenic avian influenza challenge. Avian Dis. 2010;54(1):548–554.
  • Costa TP , Brown JD , Howerth EW , et al. Homo- and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa). PLoS One. 2011;6(1):e15987.
  • Niqueux E , Guionie O , Schmitz A , et al. Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection. Avian Dis. 2010;54(1 Suppl):502–508.
  • Pybus OG , Perrins CM , Choudhury B , et al. The ecology and age structure of a highly pathogenic avian influenza virus outbreak in wild mute swans. Parasitology. 2012;139(14):1914–1923.
  • Daoust P , Prescott JF . Salmonellosis. In: Thomas NJ , Hunter DB , Atkinson CT , editors. Infectious diseases of wild birds. Oxford (UK): Blackwell Publishing; 2007. p. 270–288.
  • Kapperud G , Stenwig H , Lassen J . Epidemiology of Salmonella typhimurium O:4-12 infection in Norway, evidence of transmission from an avian wildlife reservoir. Am J Epidemiol. 1998;147:774–782.
  • Refsum T Salmonella infections in wild-living birds and hedgehogs in Norway [ Thesis for the degree of Doctor Medicinae Veterinariae]. Oslo: Schola Veterinaria Norvegiae, The Norwegian School of Veterinary Science and National Veterinary Institute. ISBN 82-90550-38-3; 2003.
  • Girdwood RW , Fricker CR , Munro D , et al. The incidence and significance of salmonella carriage by gulls (Larus spp.) in Scotland. J Hyg (Lond). 1985;95(2):229–241.
  • Palmgren H , Aspan A , Broman T , et al. Salmonella in Black-headed gulls (Larus ridibundus); prevalence, genotypes and influence on Salmonella epidemiology. Epidemiol Infect. 2006;134(3):635–644.
  • Clegg FG , Hunt AE . Salmonella infection in mute swans (Cygnus olor). Vet Rec. 1975;97:373.
  • Feare CJ , Sanders MF , Blasco R , et al. Canada goose (Branta canadensis) droppings as a potential source of pathogenic bacteria. J R Soc Promo Health. 1999;119:146–155.
  • Refsum T , Holstad G , Kapperud G , et al. An investigation of salmonella bacteria in waterfowls and migratory birds in Norway. Acta Vet Scand. 2005;46:95–100.
  • Refsum T , Handeland K , Lau Baggesen D , et al. Salmonellae in avian wildlife in Norway from 1969 to 2000. Appl Environ Microbiol. 2002;68:5595–5599.
  • Wahlström H , Tysen E , Olsson Engvall E , et al. Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Vet Rec. 2003;153:74–80.
  • Holländer R . Die aerobe bakterielle darmflora verschiedener überwinternder Gänsearten. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale A, Medizinische Mikrobiologie, Infektionskrankheiten und Parasitologie. 1982;252:394–400.
  • Rutledge ME , Siletzky RM , Gu W , et al. Characterization of campylobacter from resident Canada geese in an urban environment. J Wildlife Dis. 2013;49:1–9.
  • Fallacara DM , Monahan CM , Morishita TY , et al. Fecal shedding and antimicrobial susceptibility of selected bacterial pathogens and a survey of intestinal parasites in free-living waterfowl. Avian Dis. 2001;45:128–135.
  • Moriarty EM , Karki N , Mackenzie M , et al. Faecal indicators and pathogens in selected New Zealand waterfowl. New Zeal J Mar Fresh. 2011;45:679–688.
  • Stenkat J , Krautwald‐Junghanns ME , Schmitz Ornés A , et al. Aerobic cloacal and pharyngeal bacterial flora in six species of free-living birds. J Appl Microbiol. 2014;117:1564–1571.
  • Stenutz R , Weintraub A , Widmalm G . The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev. 2006;30:382–403.
  • Kullas H , Coles M , Rhyan J , et al. Prevalence of Escherichia coli serogroups and human virulence factors in faeces of urban Canada geese (Branta canadensis). Int J Environ Heal R. 2002;12:153–162.
  • Edge TA , Hill S . Multiple lines of evidence to identify the sources of fecal pollution at a freshwater beach in Hamilton Harbour, Lake Ontario. Water Res. 2007;41:3585–3594.
  • Hansen DL , Ishii S , Sadowsky MJ , et al. Waterfowl abundance does not predict the dominant avian source of beach Escherichia coli . J Environ Qual. 2011;40:1924–1931.
  • Hussong D , Damaré JM , Limpert RJ , et al. Microbial impact of Canada Geese (Branta canadensis) and Whistling Swan (Cygnus columbianus) on aquatic ecosystems. Appl Environ Microb. 1979;37:14–20.
  • Guan S , Xu R , Chen S , et al. Development of a procedure for discriminating among Escherichia coli isolates from animal and human sources. Appl Environ Microb. 2002;68:2690–2698.
  • Mohapatra BR , Broersma K , Mazumder A . Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG) 5-PCR genomic fingerprinting. Int J Med Microbiol. 2008;298:245–252.
  • Meerburg BG , Koene MGJ , Kleijn D . Escherichia coli concentrations in feces of geese, coots, and gulls residing on recreational water in the Netherlands. Vector Borne Zoonotic Dis. 2011;11:601–603.
  • Meyer KJ , Appeltoft CM , Schwemm AK , et al. Determining the source of fecal contamination in recreational waters. J Environ Health. 2005;60:25–30.
  • Kuczkowski M , Krawiec M , Voslamber B , et al. Virulence genes and the antimicrobial susceptibility of Escherichia coli, isolated from wild waterbirds, in the Netherlands and Poland. Vector-Borne Zoonotic Dis. 2016;16:528–536.
  • Faruque SM , Albert MJ , Mekalanos JJ . Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev. 1998;62:1301–1314.
  • Carter GR , Wise DJ . Essentials of veterinary bacteriology and mycology. 6th ed. Ames (IA): Iowa State Press; 2004.
  • Buck JD . Isolation of Candida albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida. Appl Environ Microb. 1990;56:826–828.
  • Ogg JE , Ryder RA , Smith HL . Isolation of Vibrio cholera from aquatic birds in Colorado and Utah. Appl Environ Microbiol. 1989;55:95–99.
  • Ishii S , Nakamura T , Ozawa S , et al. Water quality monitoring and risk assessment by simultaneous multipathogen quantification. Environ Sci Technol. 2014;48:4744–4749.
  • Kuhnert P , Christensen H , editors. Pasteurellaceae: biology, genomics and molecular aspects. Poole (UK): Caister Academic Press; 2008.
  • Samuel MD , Botzler RG , Wobeser GA . Avian cholera. In: Thomas NJ , Hunter DB , Atkinson CT , editors. Infectious diseases of wild birds. Oxford (UK): Blackwell Publishing; 2007. p. 239–269.
  • Samuel MD , Shadduck DJ , Goldberg DR , et al. Antibodies against Pasteurella multocida in snow geese in the western Arctic. J Wildlife Dis. 1999;35:440–449.
  • Brand C . Avian cholera in the central and mississippi flyways during 1979-1980. J Wildl Manag. 1984;48:399–406.
  • Samuel MD , Shadduck DJ , Goldberg DR , et al. Avian cholera in waterfowl: the role of lesser snow and Ross’s geese as disease carriers in the Playa Lakes Region. J Wildlife Dis. 2005;41:48–57.
  • Samuel MD , Shadduck DJ , Goldberg DR . Are wetlands the reservoir for Avian Cholera? J Wildl Dis. 2004;40:377–382.
  • Abulreesh HH , Paget TA , Goulder R . Campylobacter in waterfowl and aquatic environments: incidence and methods of detection. Environ Sci Technol. 2006;40:7122–7131.
  • EFSA (European Food Safety Authority) . The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J. 2013;11:3129.
  • Varslot M , Resell J , Fostad IG . Vannbåren campylobacterinfeksjon - trolig forårsaket av kortnebbgjess. To epidemier i Nord-Trøndelag, Stjørdal i 1994 og Verdal i 1995. Tidsskr Nor Laegeforen. 1996;116:3366–3369.
  • Llarena A-K , Skarp-de Haan CPA , Rossi M , et al. Characterization of the Campylobacter jejuni population in the Barnacle Geese reservoir. Zoonoses Public Health. 2015;62:209–221.
  • Griekspoor P , Colles FM , McCarthy ND , et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol Ecol. 2013;22(5):1463–1472.
  • Colles FM , Dingle KE , Cody AJ , et al. Comparison of Campylobacter populations in wild geese with those in starlings and free-range poultry on the same farm. Appl Environ Microb. 2008;74:3583–3590.
  • Waldenström J , Broman T , Carlsson I , et al. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecoligical guilds and taxa of migrating birds. Appl Environ Microb. 2002;68:5911–5917.
  • Waldenström J , On SLW , Ottvall R , et al. Species diversity of campylobacteria in a wild bird community in Sweden. J Appl Microbiol. 2007;102:424–432.
  • Waldenström J , On SLW , Ottvall R , et al. Avian reservoirs and zoonotic potential of the emerging human pathogen Helicobacter canadensis . Appl Environ Microbiol. 2003;69:7523–7526.
  • Fox JG , Taylor NS , Howe S , et al. Helicobacter anseris sp. nov. and Helicobacter brantae sp. nov., isolated from feces of resident Canada Geese in the Greater Boston area. Appl Environ Microb. 2006;72:4633–4637.
  • Niskanen T , Waldenström J , Fredriksson-Ahomaa M , et al. virF-positive Yersinia pseudotuberculosis and Yersinia enterocolitica found in migratory birds in Sweden. Appl Environ Microb. 2003;69:4670–4675.
  • Rocke TE , Bollinger TK . Avian botulism. In: Thomas NJ , Hunter DB , Atkinson CT , editors. Infectious diseases of wild birds. Oxford (UK): Blackwell Publishing; 2007. p. 377–416.
  • Anza I , Vidal D , Mateo R . New insights in the epidemiology of avian botulism outbreaks: necrophagous flies as vectors of Clostridium botulinum type C/D. Environ Microbiol Rep. 2014;6 :738–743.
  • Martínez-Lobo FJ , Hidalgo Á , García M , et al. First Identification of “Brachyspira hampsonii” in Wild European Waterfowl. PLoS One. 2013;8(12):e82626. DOI:10.1371/journal.pone.0082626
  • Dickx V , Kalmar ID , Tavernier P , et al. Prevalence and genotype distribution of Chlamydia psittaci in feral Canada Geese (Branta canadensis) in Belgium. Vector Borne Zoonotic Dis. 2013;13:382–384.
  • Andersen AA , Franson JC . Avian chlamydiosis. In: Thomas NJ , Hunter DB , Atkinson CT , editors. Infectious diseases of wild birds. Oxford (UK): Blackwell Publishing; 2007. p. 303–316.
  • Olsen B . Borrelia. In: Thomas NJ , Hunter DB , Atkinson CT , editors. Infectious diseases of wild birds. Oxford (UK): Blackwell Publishing; 2007. p. 341–351.
  • Humair PF . Birds and borrelia. Int J Med Microbiol. 2002;291:70–74.
  • Ataliba AC , Resende JS , Yoshinari N , et al. Isolation and molecular characterization of a Brazilian strain of Borrelia anserina, the agent of fowl spirochaetosis. Res Vet Sci. 2007;83:145–149.
  • Neu HC . The crisis in antibiotic resistance. Science. 1992;257(5073):1064–1073.
  • Witte W . Antibiotic resistance in Gram-positive bacteria: epidemiological aspects. J Antimicrob Chemother. 1999;44:Topic A, 1–9.
  • WHO (World Health Organisation) . Global action plan on antimicrobial resistance. ISBN 978 92 4 150976 3. Geneva (Switzerland): WHO Document Production Services; 2015.
  • Bywater R , Deluyker H , Deroover E , et al. A European survey of antimicrobial susceptibility among zoonotic and commensal bacteria isolated from food-producing animals. J Antimicrob Chemoth. 2004;54:744–754.
  • WHO (World Health Organisation) . Worldwide country situation analysis; response to antimicrobial resistance. ISBN 978 92 4 156494 6. Geneva (Switzerland): WHO Document Production Services; 2015.
  • Cole D , Drum DJV , Stallknecht DE , et al. Free-living Canada geese and antimicrobial resistance. Emerg Infect Dis. 2005;11:935–938.
  • Middleton JH , Ambrose A . Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada Geese (Branta canadensis). J Wildlife Dis. 2005;41:334–341.
  • Tsubokura M , Matsumoto A , Otsuki K , et al. Drug resistance and conjugative plasmids in Escherichia coli strains isolated from migratory waterfowl. J Wildl Dis. 1995;31(3):352–357.
  • Hatha AAM , Divya PS , Saramma AV , et al. Migratory bird, Branta leucopis (Barnacle goose), a potential carrier of diverse Escherichia coli serotypes into pristine Arctic environment. Curr Sci. 2013;104:1078–1080.
  • Fayer R , Morgan U , Upton SJ . Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol. 2000;30:1305–1322.
  • Xiao L , Feng Y . Zoonotic cryptosporidiosis. FEMS Immunol Med Microbiol. 2008;52:309–323.
  • Feng Y , Alderisio KA , Yang W , et al. Cryptosporidium genotypes in wildlife from a New York watershed. Appl Environ Microb. 2007;73:6475–6483.
  • Kassa H , Harrington B , Bisesi MS . Risk of occupational exposure to Cryptosporidium, Giardia, and Campylobacter associated with the feces of Giant Canada Geese. Appl Occup Environ Hyg. 2001;16:905–909.
  • Plutzer J , Tomor B . The role of aquatic birds in the environmental dissemination of human pathogenic Giardia duodenalis cysts and Cryptosporidium oocysts in Hungary. Parasitol Int. 2009;58:227–231.
  • Kassa H , Harrington BJ , Bisesi MS . Cryptosporidiosis: a brief literature review and update regarding Cryptosporidium in feces of Canada Geese (Branta canadensis). J Environ Health. 2004;66:34–39.
  • Zhou L , Kassa H , Tischler ML , et al. Host-adapted Cryptosporidium spp. in Canada geese (Branta canadensis). Appl Environ Microb. 2004;70:4211–4215.
  • Jellison KL , Lynch AE , Ziemann JM . Source tracking identifies deer and geese as vectors of human-infectious Cryptosporidium genotypes in an urban/suburban watershed. Environ Sci Technol. 2009;43:4267–4272.
  • Majewska AC , Graczyk TK , Słodkowicz-Kowalska A , et al. The role of free-ranging, captive, and domestic birds of Western Poland in environmental contamination with Cryptosporidium parvum oocysts and Giardia lamblia cysts. Parasitol Res. 2009;104:1093–1099.
  • Graczyk TK , Cranfield MR , Fayer R , et al. Infectivity of Cryptosporidium parvum oocysts is retained upon intestinal passage through a migratory water-fowl species (Canada goose, Branta canadensis). Trop Med Int Health. 1997;2:341–347.
  • Graczyk TK , Fayer R , Trout JM , et al. Giardia sp. cysts and infectious Cryptosporidium parvum oocysts in the feces of migratory Canada Geese (Branta Canadensis). Appl Environ Microb. 1998;64:2736–2738.
  • Colli CM , Bezagio RZ , Nishi L , et al. Identical assemblage of Giardia duodenalis in humans, animals and vegetables in an urban area in southern Brazil indicates a relationship among them. PLoS One. 2015;10:e0118065.
  • Didier ES , Weiss LM . Microsporidiosis: current status. Curr Opin Infect Dis. 2006;19:485–492.
  • Slodkowicz-Kowalska A , Graczyk TK , Tamang L , et al. Microsporidian species known to infect humans are present in aquatic birds: implications for transmission via water? Appl Environ Microb. 2006;72:4540–4544.
  • Benskin CMH , Wilson K , Jones K , et al. Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev. 2009;84:349–373.
  • Dieter RA , Dieter RS , Gulliver G . Zoonotic diseases: health aspects of Canadian Geese. Int J Circumpolar Health. 2001;60:676–684.
  • Dhama K , Mahendran M , Tomar S . Pathogens transmitted by migratory birds: threat perceptions to poultry health and production. Int J Poult Sci. 2008;7:516–525.
  • Thulin CG , Malmsten J , Ericsson G . Opportunities and challenges with growing wildlife populations and zoonotic diseases in Sweden. Eur J Wildl Res. 2015;61:649–656.
  • Smith AE , Craven SR , Curtis PD . Managing Canada geese in urban environments – a technical guide. Jack Barryman Institute Publication 16. Ithaca (NY): Cornell University Cooperative Extension; 1999.
  • Paulin JB . Positive benefits and negative impacts of Canada Geese. Fact Sheet FS1027. Rutgers Cooperative Research and Extension. Rutgers, NJ: Rutgers-Cook College Resource Centre; 2004.
  • Abulreesh HH , Paget TA , Goulder R . Waterfowl and the bacteriological quality of amenity ponds. J Water Health. 2004;2:183–189.
  • Leibler JH , Otter J , Roland-Holst D , et al. Industrial food animal production and global health risks: exploring the ecosystems and economics of avian influenza. EcoHealth. 2009;6:58–70.
  • Green A , Elmberg J . Ecosystem services provided by waterbirds. Biol Rev. 2014;89:105–122.