2,683
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Present and future climatic suitability for dengue fever in Africa

, &
Article: 1782042 | Received 22 Apr 2020, Accepted 04 Jun 2020, Published online: 19 Jun 2020

References

  • Gubler DJ. The economic burden of dengue . Am J Trop Med Hyg. 2012;86(5):743–7.
  • Acharya BK , Cao C , Xu M , et al. Present and future of dengue fever in Nepal: mapping climatic suitability by ecological niche model . Environ Res Public Heal. 2018;15:187–198.
  • Simo FBN , Bigna JJ , Kenmoe S , et al. Dengue virus infection in people residing in Africa: A systematic review and meta-analysis of prevalence studies. Sci Rep. 2019;9:1–9.
  • Messina JP , Brady OJ , Golding N , et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2020;4:1508–1515.
  • Naish S , Dale P , Mackenzie JS , et al. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect Dis. 2014;14:1–14.
  • Ebi KL , Nealon J . Dengue in a changing climate. Environ Res. 2016;151:115–123.
  • Ryan SJ , Carlson CJ , Mordecai EA , et al. Global expansion and redistribution of Aedes - borne virus transmission risk with climate change. PLoS Negl Trop Dis. 2019;13:1–20.
  • Campbell-lendrum D , Manga L , Bagayoko M , et al. Climate change and vector-borne diseases: what are the implications for public health research and policy? Philos Trans R Soc B. 2015;370:370.
  • IPCC , C LIMATE C HANGE 2001 :, Sci. Basis. Contrib. Work. Gr. I to Third Assess. Rep. Intergov. Panel Clim. Chang. Cambridge Univ. Press. Cambridge, UK New York, NY, USA (2001)
  • Hulme M , Doherty R , Ngara T , et al. African climate change: 1900-2100. Clim Res. 2001;17:145–168.
  • Girvetz EH , Zganjar C . Dissecting indices of aridity for assessing the impacts of global climate change. Clim Change. 2014;126:469–483.
  • Sillmann J , Kharin VV , Zwiers FW , et al. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos. 2013;118:2473–2493.
  • Morin CW , Comrie AC , Ernst K . Climate and dengue transmission: evidence and implications. Environ Health Perspect. 2013;121(11–12):1264–1272.
  • Fouque F , Reeder JC . Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: A look at the evidence. Infect Dis Poverty. 2019;8:1–9.
  • Mweya CN , Kimera SI , Kija JB , et al. Predicting distribution of Aedes aegypti and Culex pipiens complex, potential vectors of Rift Valley fever virus in relation to disease epidemics in East Africa. Infect Ecol Epidemiol. 2013;8686:1–7.
  • Ochieng AO , Nanyingi M , Kipruto E , et al. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya. Infect Ecol Epidemiol. 2016;6:1–9.
  • Mweya CN , Kimera SI , Stanley G , et al. Distribution of infected Aedes aegypti co- occurrence with dengue epidemics risk areas in Tanzania. PLoS One. 2016;1–13.
  • Ren Z , Wang D , Ma A , et al. Predicting malaria vector distribution under climate change scenarios in China : challenges for malaria elimination. Nat Publ Gr. 2020;6:1–13.
  • Kraemer MUG , Sinka ME , Duda KA , et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:1–18.
  • Gu H , Leung RKK , Jing Q , et al. Meteorological factors for dengue fever control and prevention in South China. Int J Environ Res Public Health. 2016;13:1–12.
  • Allouche O , Tsoar A , Kadmon R . Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 2006;43:1223–1232.
  • Leta S , Fetene E , Mulatu T , et al. Modeling the global distribution of Culicoides imicola : an ensemble approach. Sci Rep. 2019;9:1–9.
  • Hii YL , Zhu H , Ng N , et al. Forecast of dengue incidence using temperature and rainfall. PLoS Negl Trop Dis. 2012;6(11):e1908.
  • Jain R , Sontisirikit S , Iamsirithaworn S , et al. Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infect Dis. 2019;19:1–16.
  • WHO . Global Vector Control Response 2017–2030 ; 2017.
  • Hayes MA , Piaggio AJ . Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One. 2018;13:1–17.
  • Elith J , Graham CH , Anderson RP , et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop). 2006;29(2):129–151.
  • Araújo MB , New M . Ensemble forecasting of species distributions. Trends Ecol Evol. 2007;22:42–47.
  • Chalghaf B , Chemkhi J , Mayala B , et al. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin : impact of climate change. Parasit Vectors. 2018;11:1–9.
  • Phillips RES , Steven J , Anderson RP . Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190:231–259.
  • Butterworth MK , Morin CW , Comrie AC . An analysis of the potential impact of climate change on dengue transmission in the southeastern USA. EnvironHealth Perspect. 2017;125:579–585.
  • Goindin D , Delannay C , Ramdini C , et al. Parity and longevity of aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS One. 2015;10:1–21.
  • Liu B , Jiao Z , Ma J , et al. Modelling the potential distribution of arbovirus vector Aedes aegypti under current and future climate scenarios in Taiwan, China. Pest Manag Sci. 2019;75:3076–3086.
  • Simons RRL , Croft S , Rees E , et al. Using species distribution models to predict potential hot-spots for Rift Valley Fever establishment in the UK. PLoS One. 2019;14(12):e0225250.
  • Jácome G , Vilela P , Yoo C . Present and future incidence of dengue fever in Ecuador nationwide and coast region scale using species distribution modeling for climate variability’s effect. Ecol Modell. 2019;400:60–72.
  • WHO . Treatment, prevention and control global strategy for dengue prevention and control. WHO, Geneva 27, Switzerland. 2; 2012.
  • Akpan GE , Adepoju KA , Oladosu OR . Potential distribution of dominant malaria vector species in tropical region under climate change scenarios. PLoS One. 2019;14:1–21.
  • Fouque F , Carinci R , Gaborit P , et al. Aedes aegypti survival and dengue transmission patterns in French Guiana. J Vector Ecol. 2006;31:390–399.
  • Campbell LP , Luther C , Moo-llanes D , et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Campbell. 2015;370:1–9.
  • Tun-Lin W , Burkot TR , Kay BH . Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol. 2000;14:31–37.
  • Medlock JM , Hansford KM , Versteirt V , et al. An entomological review of invasive mosquitoes in Europe. Bull Entomol Res. 2018;105:637–663.