8,363
Views
111
CrossRef citations to date
0
Altmetric
Review Article

Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles

ORCID Icon, ORCID Icon &
Article: 1508271 | Received 02 Apr 2018, Accepted 25 Jul 2018, Published online: 20 Aug 2018

References

  • Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007 Oct 01;110(7):1–15. PubMed PMID: 17536014; eng.
  • van Balkom BW, Pisitkun T, Verhaar MC, et al. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 2011 Dec;80(11):1138–1145. PubMed PMID: 21881557; PubMed Central PMCID: PMCPMC3412193. eng.
  • Michael A, Bajracharya SD, Yuen PS, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010 Jan;16(1):34–38. PubMed PMID: 19627513; PubMed Central PMCID: PMCPMC2844919. eng.
  • Street JM, Barran PE, Mackay CL, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012 Jan 05;10:5. PubMed PMID: 22221959; PubMed Central PMCID: PMCPMC3275480. eng.
  • Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic. 2008 Jun;9(6):871–881. PubMed PMID: 18331451; PubMed Central PMCID: PMCPMC3636814. eng.
  • Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Reviews Immunol. 2014 Mar;14(3):195–208. PubMed PMID: 24566916; PubMed Central PMCID: PMCPMC4350779. eng.
  • Nawaz M, Camussi G, Valadi H, et al. The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat Reviews Urol. 2014 Dec;11(12):688–701. PubMed PMID: 25403245; eng.
  • Lawson C, Vicencio JM, Yellon DM, et al. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol. 2016 Feb;228(2):R57R71. PubMed PMID: 26743452; eng.
  • Kooijmans SA, Vader P, van Dommelen SM, et al. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012;7:1525–1541. PubMed PMID: 22619510; PubMed Central PMCID: PMCPMC3356169. eng.
  • Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods (San Diego, CA). 2012 Feb;56(2):293–304. PubMed PMID: 22285593; eng.
  • Greening DW, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol (Clifton, NJ). 2015;1295:179–209. PubMed PMID: 25820723; eng.
  • Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2. PubMed PMID: 24009896; PubMed Central PMCID: PMCPMC3760653. eng. DOI: 10.3402/jev.v2i0.19861
  • Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2016 Dec 20;17(1):11–33. PubMed PMID: 27830852; eng.
  • Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng. 2002;4:261–286. PubMed PMID: 12117759; eng.
  • Paguirigan AL, Beebe DJ. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2008 Sep;30(9):811–821. PubMed PMID: 18693260; PubMed Central PMCID: PMCPMC2814162. eng.
  • Walker GM, Zeringue HC, Beebe DJ. Microenvironment design considerations for cellular scale studies. Lab Chip. 2004 Apr;4(2):91–97. PubMed PMID: 15052346; eng.
  • Ko J, Hemphill MA, Gabrieli D, et al. Smartphone-enabled optofluidic exosome diagnostic for concussion recovery. Sci Rep. 2016 Aug 08;6:31215. PubMed PMID: 27498963; PubMed Central PMCID: PMCPMC4976377. eng.
  • Tao SC, Guo SC, Zhang CQ. Platelet-derived extracellular vesicles: an emerging therapeutic approach. Int J Biol Sci. 2017;137:828–834. PubMed PMID: 28808416; PubMed Central PMCID: PMCPMC5555101. Eng.
  • Maas SL, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017 Mar;27(3):172–188. PubMed PMID: 27979573; PubMed Central PMCID: PMCPMC5318253. eng.
  • Chen CY, Rao SS, Ren L, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics. 2018;8(6):1607–1623. PubMed PMID: 29556344; PubMed Central PMCID: PMCPMC5858170. eng.
  • Hu Y, Rao SS, Wang ZX, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 2018;8(1):169–184. PubMed PMID: 29290800; PubMed Central PMCID: PMCPMC5743467. eng.
  • Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol. 2011 Jan;31(1):27–33. . PubMed PMID: 21160065; eng.
  • Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008 Dec;10(12):1470–1476. PubMed PMID: 19011622; PubMed Central PMCID: PMCPMC3423894. eng.
  • Al-Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008 May;10(5):619–624. PubMed PMID: 18425114; eng.
  • Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015 Jul 9;523(7559):177–182. PubMed PMID: 26106858; PubMed Central PMCID: PMCPMC4825698. eng.
  • Nolte-’t Hoen EN, Buschow SI, Anderton SM, et al. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009 Feb 26;113(9):1977–1981. . PubMed PMID: 19064723; eng.
  • Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015 Nov 19;527(7578):329–335. PubMed PMID: 26524530; PubMed Central PMCID: PMCPMC4788391. eng.
  • Lai RC, Tan SS, Yeo RW, et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles. 2016;5:29828. PubMed PMID: 26928672; PubMed Central PMCID: PMCPMC4770866. eng.
  • Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968E977. PubMed PMID: 26858453; PubMed Central PMCID: PMCPMC4776515. eng.
  • Gan X, Gould SJ. Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell. 2011 Mar 15;22(6):817–830. PubMed PMID: 21248205; PubMed Central PMCID: PMCPMC3057706. eng.
  • Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA. 2012 Mar 13;109(11):4146–4151. PubMed PMID: 22315426; PubMed Central PMCID: PMCPMC3306724. eng.
  • Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016 Mar 10;164(6):1226–1232. PubMed PMID: 26967288; eng.
  • Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2. PubMed PMID: 24009890; PubMed Central PMCID: PMCPMC3760635. eng. DOI:10.3402/jev.v2i0.20389
  • Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983 Jul;33(3):967–978. PubMed PMID: 6307529; eng.
  • Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987 Jul 05;262(19):9412–9420. PubMed PMID: 3597417; eng.
  • Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983 Aug;97(2):329–339. PubMed PMID: 6309857; PubMed Central PMCID: PMCPMC2112509. eng.
  • Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996 Mar 01;183(3):1161–1172. PubMed PMID: 8642258; PubMed Central PMCID: PMCPMC2192324. eng.
  • Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010 Oct 29;107(9):1047–1057. PubMed PMID: 21030722; eng.
  • Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654–659. PubMed PMID: 17486113; eng.
  • Ratajczak J, Wysoczynski M, Hayek F, et al. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006 Sep;20(9):1487–1495. PubMed PMID: 16791265; eng.
  • Choi DS, Lee J, Go G, et al. Circulating extracellular vesicles in cancer diagnosis and monitoring: an appraisal of clinical potential. Mol Diagn Ther. 2013 Oct;17(5):265–271. PubMed PMID: 23729224; eng.
  • Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012 Jul;1820(7):940–948. PubMed PMID: 22503788; eng.
  • Zhou Y, Xu H, Xu W, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013 Apr 25;4(2):34. PubMed PMID: 23618405; PubMed Central PMCID: PMCPMC3707035. eng.
  • Gatti S, Bruno S, Deregibus MC, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrology, Dialysis, Transplantation: Official Publication Eur Dial Transpl Assoc Eur Ren Assoc. 2011 May;26(5):1474–1483. PubMed PMID: 21324974; eng.
  • Tao SC, Yuan T, Rui BY, et al. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics. 2017;7(3):733–750. PubMed PMID: 28255363; PubMed Central PMCID: PMCPMC5327646. eng.
  • Guo SC, Tao SC, Yin WJ, et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7(1):81–96. PubMed PMID: 28042318; PubMed Central PMCID: PMCPMC5196887. eng.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037. PubMed PMID: 23238461; eng.
  • Zhang ZC, Tang C, Dong Y, et al. Targeting the long noncoding RNA MALAT1 blocks the pro-angiogenic effects of osteosarcoma and suppresses tumour growth. Int J Biol Sci. 2017;13(11):1398–1408. PubMed PMID: 29209144; PubMed Central PMCID: PMCPMC5715523. eng.
  • Tao SC, Rui BY, Wang QY, et al. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv. 2018 Nov;25(1):241–255. PubMed PMID: 29334272; eng.
  • Raemdonck K, Braeckmans K, Demeester J, et al. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev. 2014 Jan 07;43(1):444–472. PubMed PMID: 24100581; eng.
  • Jang SC, Gho YS. Could bioengineered exosome-mimetic nanovesicles be an efficient strategy for the delivery of chemotherapeutics? Nanomedicine (London, England). 2014 Feb;9(2):177–180. PubMed PMID: 24552557; eng.
  • Tao SC, Guo SC, Zhang CQ. Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine. Advanced Sci. Adv Sci (Weinh). 2018;5(2):1700449.
  • Clayton A, Harris CL, Court J, et al. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol. 2003 Feb;33(2):522–531. PubMed PMID: 12645951; eng.
  • Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013 Jan;21(1):185–191. PubMed PMID: 23032975; PubMed Central PMCID: PMCPMC3538304. eng.
  • Momen-Heravi F, Balaj L, Alian S, et al. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013 Oct;394(10):1253–1262. PubMed PMID: 23770532; eng.
  • Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods (San Diego, CA). 2015 Oct 01;87:3–10.
  • Yuana Y, Boing AN, Grootemaat AE, et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015;4:29260. PubMed PMID: 26563735; PubMed Central PMCID: PMCPMC4643195. eng.
  • Linares R, Tan S, Gounou C, et al. High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles. 2015;4:29509. PubMed PMID: 26700615; PubMed Central PMCID: PMCPMC4689953. eng.
  • Cantin R, Diou J, Belanger D, et al. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods. 2008 Sep 30;338(1–2):21–30. PubMed PMID: 18675270; eng.
  • Gyorgy B, Modos K, Pallinger E, et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011 Jan 27;117(4):e39e48. PubMed PMID: 21041717; eng.
  • Ismail N, Wang Y, Dakhlallah D, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013 Feb 07;121(6):984–995. PubMed PMID: 23144169; PubMed Central PMCID: PMCPMC3567345. eng.
  • Jayachandran M, Miller VM, Heit JA, et al. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods. 2012 Jan 31;375(1–2):207–214. PubMed PMID: 22075275; PubMed Central PMCID: PMCPMC3253871. eng.
  • Momen-Heravi F, Balaj L, Alian S, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol. 2012;3:162. PubMed PMID: 22661955; PubMed Central PMCID: PMCPMC3362089. eng.
  • Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology. 2006 Apr; Chapter 3:Unit 3.22. PubMed PMID: 18228490; eng. DOI: 10.1002/0471143030.cb0322s30.
  • Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017 May 12;120(10):1632–1648. PubMed PMID: 28495994; eng.
  • Merchant ML, Powell DW, Wilkey DW, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clinical Applications. 2010 Jan;4(1):84–96. PubMed PMID: 21137018; eng.
  • Grant R, Ansa-Addo E, Stratton D, et al. A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods. 2011 Aug 31;371(1–2):143–151. PubMed PMID: 21741384; eng.
  • Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031. PubMed PMID: 26194179; PubMed Central PMCID: PMCPMC4507751. eng.
  • Xu R, Greening DW, Zhu HJ, et al. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest. 2016 Apr 1;126(4):1152–1162. PubMed PMID: 27035807; PubMed Central PMCID: PMCPMC4811150. eng.
  • Sodar BW, Kittel A, Paloczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016 Apr 18;6:24316. PubMed PMID: 27087061; PubMed Central PMCID: PMCPMC4834552. eng.
  • Baranyai T, Herczeg K, Onodi Z, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PloS One. 2015;10(12):e0145686. PubMed PMID: 26690353; PubMed Central PMCID: PMCPMC4686892. eng.
  • Hong CS, Funk S, Muller L, et al. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer. J Extracell Vesicles. 2016;5:29289. PubMed PMID: 27018366; PubMed Central PMCID: PMCPMC4808740. eng.
  • Welton JL, Webber JP, Botos LA, et al. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles. 2015;4:27269. PubMed PMID: 25819214; PubMed Central PMCID: PMCPMC4376847. eng.
  • Shih CL, Chong KY, Hsu SC, et al. Development of a magnetic bead-based method for the collection of circulating extracellular vesicles. N Biotechnol. 2016 Jan 25;33(1):116–122. PubMed PMID: 26409934; eng.
  • Clayton A, Court J, Navabi H, et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods. 2001 Jan 01;247(1–2):163–174. PubMed PMID: 11150547; eng.
  • Kanwar SS, Dunlay CJ, Simeone DM, et al. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014 Jun 07;14(11):1891–1900. PubMed PMID: 24722878; PubMed Central PMCID: PMCPMC4134440. eng.
  • Paolini L, Zendrini A, Di Noto G, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016 Mar 24;6:23550. PubMed PMID: 27009329; PubMed Central PMCID: PMCPMC4806376. eng.
  • Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017 Aug 23. PubMed PMID: 28832692; eng. DOI:10.1039/c7lc00592j
  • Chen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010 Feb 21;10(4):505–511. PubMed PMID: 20126692; PubMed Central PMCID: PMCPMC3136803. eng.
  • Ashcroft BA, De Sonneville J, Yuana Y, et al. Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomedical Microdevices. 2012 Aug;14(4):641–649. PubMed PMID: 22391880; PubMed Central PMCID: PMCPMC3388260. eng.
  • Vaidyanathan R, Naghibosadat M, Rauf S, et al. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal Chem. 2014 Nov 18;86(22):11125–11132. PubMed PMID: 25324037; eng.
  • Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016 Aug 02;16(16):3033–3042. PubMed PMID: 27045543; PubMed Central PMCID: PMCPMC4970962. eng.
  • Kang YT, Kim YJ, Bu J, et al. High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale. 2017 Sep 21;9(36):13495–13505. PubMed PMID: 28862274; eng.
  • Dudani JS, Gossett DR, Tse HT, et al. Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics. 2015 Jan;9(1):014112. PubMed PMID: 25713694; PubMed Central PMCID: PMCPMC4320146. eng.
  • Shao H, Chung J, Lee K, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015 May 11;6:6999. PubMed PMID: 25959588; PubMed Central PMCID: PMCPMC4430127. eng.
  • Zhao Z, Yang Y, Zeng Y, et al. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016 Feb 07;16(3):489–496. PubMed PMID: 26645590; PubMed Central PMCID: PMCPMC4729647. eng.
  • Rt D, Kim J, Sc J, et al. Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip. 2012 Dec 21;12(24):5202–5210. PubMed PMID: 23111789; eng.
  • Cho S, Jo W, Heo Y, et al. Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane. Sensors and Actuators B: Chemical. 2016;233:289–297.
  • Liang LG, Kong MQ, Zhou S, et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep. 2017 Apr 24;7:46224. PubMed PMID: 28436447; PubMed Central PMCID: PMCPMC5402302. eng.
  • Woo HK, Sunkara V, Park J, et al. Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples. ACS Nano. 2017 Feb 28;11(2):1360–1370. PubMed PMID: 28068467; eng.
  • Liu F, Vermesh O, Mani V, et al. The exosome total isolation chip. ACS Nano. 2017 Nov 01 PubMed PMID: 29090896; eng. DOI:10.1021/acsnano.7b04878.
  • Wang Z, Wu HJ, Fine D, et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip. 2013 Aug 07;13(15):2879–2882. PubMed PMID: 23743667; PubMed Central PMCID: PMCPMC3740541. eng.
  • Huang LR, Cox EC, Austin RH, et al. Continuous particle separation through deterministic lateral displacement. Science (New York, NY). 2004 May 14;304(5673):987–990. PubMed PMID: 15143275; eng.
  • Zeming KK, Thakor NV, Zhang Y, et al. Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab Chip. 2016 Jan 07;16(1):75–85. PubMed PMID: 26575003; eng.
  • Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol. 2016 Nov;11(11):936–940. PubMed PMID: 27479757; eng.
  • Liu C, Guo J, Tian F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano. 2017 Jul 25;11(7):6968–6976. PubMed PMID: 28679045; eng.
  • Bruus H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip. 2012 Mar 21;12(6):1014–1021. PubMed PMID: 22349937; eng.
  • Ding X, Li P, Lin SC, et al. Surface acoustic wave microfluidics. Lab Chip. 2013 Sep 21;13(18):3626–3649. PubMed PMID: 23900527; PubMed Central PMCID: PMCPMC3992948. eng.
  • Destgeer G, Sung HJ. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip. 2015 Jul 07;15(13):2722–2738. . PubMed PMID: 26016538; eng.
  • Lee K, Shao H, Weissleder R, et al. Acoustic purification of extracellular microvesicles. ACS Nano. 2015 Mar 24;9(3):2321–2327. PubMed PMID: 25672598; PubMed Central PMCID: PMCPMC4373978. eng.
  • Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the National Academy of Sciences of the USA. 2017 Sep 18. PubMed PMID: 28923936; eng. DOI: 10.1073/pnas.1709210114.
  • Fang S, Tian H, Li X, et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PloS One. 2017;12(4):e0175050. PubMed PMID: 28369094; PubMed Central PMCID: PMCPMC5378374. eng.
  • Friedrich R, Block S, Alizadehheidari M, et al. A nano flow cytometer for single lipid vesicle analysis. Lab Chip. 2017 Feb 28;17(5):830–841. PubMed PMID: 28128381; eng.
  • Im H, Shao H, Park YI, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014 May;32(5):490–495. PubMed PMID: 24752081; PubMed Central PMCID: PMCPMC4356947. eng.
  • Sina AA, Vaidyanathan R, Dey S, et al. Real time and label free profiling of clinically relevant exosomes. Sci Rep. 2016 Jul 28;6:30460. PubMed PMID: 27464736; PubMed Central PMCID: PMCPMC4964344. eng.
  • Shao H, Chung J, Balaj L, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012 Dec;18(12):1835–1840. PubMed PMID: 23142818; PubMed Central PMCID: PMCPMC3518564. eng.
  • Akagi T, Kato K, Kobayashi M, et al. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PloS One. 2015;10(4):e0123603. PubMed PMID: 25928805; PubMed Central PMCID: PMCPMC4415775. eng.
  • Fraikin JL, Teesalu T, McKenney CM, et al. A high-throughput label-free nanoparticle analyser. Nat Nanotechnol. 2011 May;6(5):308–313. PubMed PMID: 21378975; eng.
  • Zhou Q, Rahimian A, Son K, et al. Development of an aptasensor for electrochemical detection of exosomes. Methods (San Diego, CA). 2016 Mar 15;97:88–93. PubMed PMID: 26500145; eng.
  • He M, Crow J, Roth M, et al. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014 Oct 07;14(19):3773–3780. PubMed PMID: 25099143; PubMed Central PMCID: PMCPMC4161194. eng.
  • Richards KE, Go DB, Hill R. Surface acoustic wave lysis and ion-exchange membrane quantification of exosomal microRNA. Methods Mol Biol (Clifton, NJ). 2017;1580:59–70. PubMed PMID: 28439826; eng.
  • Ko J, Bhagwat N, Yee SS, et al. Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes. ACS Nano. 2017 Oct 17 PubMed PMID: 29019651; eng. DOI:10.1021/acsnano.7b05503.
  • Inan H, Poyraz M, Inci F, et al. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev. 2017 Jan 23;46(2):366–388. PubMed PMID: 27841420; PubMed Central PMCID: PMCPMC5529146. eng.
  • Lifson MA, Ozen MO, Inci F, et al. Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring. Adv Drug Deliv Rev. 2016 Aug 01;103:90–104. PubMed PMID: 27262924; PubMed Central PMCID: PMCPMC4943868. eng.
  • Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–144. PubMed PMID: 18358075; eng.
  • Marczak S, Richards K, Ramshani Z, et al. Simultaneous isolation and preconcentration of exosomes by ion concentration polarization. Electrophoresis. 2018 Feb 27 PubMed PMID: 29484678; eng. DOI: 10.1002/elps.201700491.
  • Gallo A, Tandon M, Alevizos I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PloS One. 2012;7(3):e30679. PubMed PMID: 22427800; PubMed Central PMCID: PMCPMC3302865. eng.
  • Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103–141. PubMed PMID: 27117662; PubMed Central PMCID: PMCPMC5382933. eng.
  • Boyiadzis M, Whiteside TL. Plasma-derived exosomes in acute myeloid leukemia for detection of minimal residual disease: are we ready? Expert Rev Mol Diagn. 2016 Jun;16(6):623–629. PubMed PMID: 27043038; PubMed Central PMCID: PMCPMC5400097. eng.
  • Whiteside TL. The potential of tumor-derived exosomes for noninvasive cancer monitoring. PubMed PMID: 26289602; PubMed Central PMCID: PMCPMC4813325. eng Expert Rev Mol Diagn. 2015;1510:1293–1310.
  • Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008 Jul;110(1):13–21. . PubMed PMID: 18589210; eng.
  • Zhao W, Cheng R, Miller JR, et al. Label-free microfluidic manipulation of particles and cells in magnetic liquids. Adv Funct Mater. 2016 Jun 14;26(22):3916–3932. PubMed PMID: 28663720; PubMed Central PMCID: PMCPMC5487005. eng.
  • Tao SC, Guo SC, Zhang CQ. Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2018 Feb;5(2):1700449. PubMed PMID: 29619297; PubMed Central PMCID: PMCPMC5827100. eng.
  • Jo W, Jeong D, Kim J, et al. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 2014 Apr 7;14(7):1261–1269. PubMed PMID: 24493004; eng.
  • Lunavat TR, Jang SC, Nilsson L, et al. RNAi delivery by exosome-mimetic nanovesicles – implications for targeting c-Myc in cancer. Biomaterials. 2016 Sep;102:231–238. PubMed PMID: 27344366; eng.
  • Kim OY, Lee J, Gho YS. Extracellular vesicle mimetics: novel alternatives to extracellular vesicle-based theranostics, drug delivery, and vaccines. Semin Cell Dev Biol. 2017 Jul;67:74–82. PubMed PMID: 27916566; eng.
  • Kuo JS, Chiu DT. Controlling mass transport in microfluidic devices. Annual Review of Analytical Chemistry (Palo Alto, CA). 2011;4:275–296. PubMed PMID: 21456968; PubMed Central PMCID: PMCPMC5724977. eng.