9,128
Views
65
CrossRef citations to date
0
Altmetric
Review Article

Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence

, , &
Article: 1710020 | Received 14 Aug 2019, Accepted 21 Dec 2019, Published online: 07 Jan 2020

References

  • Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269–18.
  • Nieuwland R, Sturk A. Why do cells release vesicles? Thromb Res. 2010;125:S49–S51.
  • Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569.
  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289.
  • Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 2013;14:14240–14269.
  • Clayton A, Court J, Navabi H, et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods. 2001;247:163–174.
  • Dai S, Wan T, Wang B, et al. More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA) - Specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res. 2005;11:7554–7563.
  • Barok M, Puhka M, Vereb G, et al. Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer. 2018;18:504.
  • Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100:1603–1607.
  • Ehnfors J, Kost-Alimova M, Persson NL, et al. Horizontal transfer of tumor DNA to endothelial cells in vivo. Cell Death Differ. 2009;16:749–757.
  • Cai J, Guan W, Tan X, et al. SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clin Sci (Lond). 2015;129:259–269.
  • Lane RE, Korbie D, Hill MM, et al. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med. 2018;7:14.
  • Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214–222.
  • Menay F, Herschlik L, De Toro J, et al. Exosomes isolated from ascites of T-cell lymphoma-bearing mice expressing surface CD24 and HSP-90 induce a tumor-specific immune response. Front Immunol. 2017;8:286.
  • Konoshenko MY, Lekchnov EA, Vlassov AV, et al. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int. 2018;2018:1–27.
  • Simonsen JB. What are we looking at? extracellular vesicles, lipoproteins, or both? Circ Res. 2017;121:920–922.
  • Sódar BW, Kittel Á, Pálóczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6:1–12.
  • Ramirez MI, Amorim MG, Gadelha C, et al. Technical challenges of working with extracellular vesicles. Nanoscale. 2018;10:881–906.
  • Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:1–25.
  • Birch DJS, Chen Y, Rolinski OJ. Biological and medical photonics, spectroscopy and microscopy vol 4. photonics. Biol Med Photonics, Spectrosc Microsc. 2015;4(Photonics IV):1–56.
  • Lakowicz JR. Principles of fluorescence Spectroscopy. Kluwer Academic/ Plenum, New York; 1999.
  • Hell SW. Toward fluorescence nanoscopy. Nat Biotechnol. 2003;21:1347–1355.
  • Nicola AM, Frases S, Casadevall A. Lipophilic dye staining of cryptococcus neoformans extracellular vesicles and capsule. Eukaryot Cell. 2009;8:1373–1380.
  • Macklin R, Wang H, Loo D, et al. Extracellular vesicles secreted by highly metastatic clonal variants of osteosarcoma preferentially localize to the lungs and induce metastatic behaviour in poorly metastatic clones. Oncotarget. 2016;7:43570–43587.
  • Pužar Dominkuš P, Stenovec M, Sitar S et al. PKH26 labeling of extracellular vesicles: characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim Biophys Acta - Biomembr. 2018;1860:1350–1361.
  • Dabrowska S, Del Fattore A, Karnas E, et al. Imaging of extracellular vesicles derived from human bone marrow mesenchymal stem cells using fluorescent and magnetic labels. Int J Nanomedicine. 2018;13:1653–1664.
  • Lai CP, Kim EY, Badr CE, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015;6:7029.
  • Okada S, Yankawa S, Saitoh H. Wash-free instant detection of giant plasma membrane vesicles. Anal Biochem. 2018;557:59–61.
  • Monopoli MP, Zendrini A, Wu D, et al. Endogenous exosome labelling with an amphiphilic NIR-fluorescent probe. Chem Commun. 2018;54:7219–7222.
  • Kaiser RD, London E. Determination of the depth of BODIPY probes in model membranes by parallax analysis of fluorescence quenching. Biochim Biophys Acta - Biomembr. 1998;1375:13–22.
  • Bacalum M, Wang L, Boodts S, et al. A blue-light-emitting BODIPY probe for lipid membranes. Langmuir. 2016;32:3495–3505.
  • Kwiatek JM, Owen DM, Abu-Siniyeh A, et al. Characterization of a new series of fluorescent probes for imaging membrane order. PLoS One. 2013;8:1–7.
  • Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979;26:557–573.
  • Jin L, Millard AC, Wuskell JP, et al. Characterization and application of a new optical probe for membrane lipid domains. Biophys J. 2006;90:2563–2575.
  • Thompson RB .Red and near-infrared fluorometry. In: Topics in fluorescence spectroscopy; Vols. 4, Ch.6. Lakowicz J.R. (eds), Springer, Boston, MA, 1994.
  • Marshall MV, Rasmussen JC, Tan I-C, et al. Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J. 2010;2:12–25.
  • Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:26.
  • Sørensen TJ, Thyrhaug E, Szabelski M, et al. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay. Methods Appl Fluoresc. 2013;1:025001.
  • Stewart HL, Yip P, Rosenberg M, et al. Nanoparticle metrology of silica colloids and super-resolution studies using the ADOTA fluorophore. Meas Sci Technol. 2016;27:045007.
  • Van De Linde S, Löschberger A, Klein T, et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc. 2011;6:991–1009.
  • Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91:4258–4272.
  • Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol. 2004;22:47–52.
  • Shahmuradyan A, Krull UJ. Intrinsically labeled fluorescent oligonucleotide probes on quantum dots for transduction of nucleic acid hybridization. Anal Chem. 2016;88:3186–3193.
  • Sreenivasan VKA, Zvyagin AV, Goldys EM. Luminescent nanoparticles and their applications in the life sciences. J Phys Condens Matter. 2013;25:194101.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–448.
  • Van Audenhove I, Gettemans J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine. 2016;8:40–48.
  • Rothbauer U, Zolghadr K, Tillib S, et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods. 2006;3:887–889.
  • Ries J, Kaplan C, Platonova E, et al. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods. 2012;9:582–584.
  • van Driel PBAA, van der Vorst JR, Verbeek FPR, et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent Anti-epidermal growth factor receptor nanobody. Int J Cancer. 2014;134:2663–2673.
  • Wang Y, Cai E, Rosenkranz T, et al. Small quantum dots conjugated to nanobodies as immunofluorescence probes for nanometric microscopy. Bioconjug Chem. 2014;25:2205–2211.
  • Popovic M, Mazzega E, Toffoletto B, et al. Isolation of anti-extra-cellular vesicle single-domain antibodies by direct panning on vesicle-enriched fractions. Microb Cell Fact. 2018;17:6.
  • Kooijmans SAA, Aleza CG, Roffler SR, et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 2016;5:31053.
  • Kooijmans SAA, Fliervoet LAL, van der Meel R, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release. 2016;224:77–85.
  • Kooijmans SAA, Gitz-Francois JJJM, Schiffelers RM, et al. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach. Nanoscale. 2018;10:2413–2426.
  • Gao M-L, He F, Yin B-C, et al. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Analyst. 2019;144:1995–2002.
  • Zong S, Zong J, Chen C, et al. Single molecule localization imaging of exosomes using blinking silicon quantum dots. Nanotechnology. 2018;29:065705.
  • Wang H, Chen H, Huang Z, et al. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta. 2018;184:219–226.
  • Tian Q, He C, Liu G, et al. Nanoparticle counting by microscopic digital detection: selective quantitative analysis of exosomes via surface-anchored nucleic acid amplification. Anal Chem. 2018;90:6556–6562.
  • Miranda J, Paules C, Nair S, et al. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction - Liquid biopsies to monitoring fetal growth. Placenta. 2018;64:34–43.
  • Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27:796–810.
  • Malloy A, Carr B. NanoParticle tracking analysis - the halotm system. Part Part Syst Charact. 2006;23:197–204.
  • Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7:780–788.
  • Oosthuyzen W, Sime NEL, Ivy JR, et al. Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol. 2013;591:5833–5842.
  • Gercel-Taylor C, Atay S, Tullis RH, et al. Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal Biochem. 2012;428:44–53.
  • Elfeky O, Longo S, Lai A, et al. Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation. Placenta. 2017;50:60–69.
  • Soo CY, Song Y, Zheng Y, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136:192–197.
  • Erdbrügger U, Lannigan J. Analytical challenges of extracellular vesicle detection: A comparison of different techniques. Cytom Part A. 2016;89:123–134.
  • van der Pol E, Coumans F, Varga Z, et al. Innovation in detection of microparticles and exosomes. J Thromb Haemost. 2013;11:36–45.
  • Ward M, Turner P, DeJohn M, et al. Fundamentals of acoustic cytometry. Curr Protoc Cytom. 2009;1–12. DOI:10.1002/0471142956.cy0122s49
  • Macey MG. Principles of Flow Cytometry. Flow Cytom - Princ Appl. 2007;1:12–27.
  • Lacroix R, Robert S, Poncelet P, et al. Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost. 2010;36:807–818.
  • Nolan JP. Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr Protoc Cytom. 2015;2015:13.14.1–13.14.16.
  • Stoner SA, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytom Part A. 2016;89:196–206.
  • Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4:25530.
  • van der Vlist EJ, Nolte-’t Hoen ENM, Stoorvogel W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 2012;7:1311–1326.
  • Kormelink TG, Arkesteijn GJA, Nauwelaers FA, et al. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytom Part A. 2016;89:135–147.
  • Lannigan J, Erdbruegger U. Imaging flow cytometry for the characterization of extracellular vesicles. Methods. 2017;112:55–67.
  • Erdbrügger U, Rudy CK, E. Etter M, et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytom Part A. 2014;85:756–770.
  • Maas SLN, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015;200:87–96.
  • Vagida M, Arakelyan A, Lebedeva A, et al. Flow analysis of individual blood extracellular vesicles in acute coronary syndrome. Platelets. 2017;28:165–173.
  • Wiklander OPB, Bostancioglu RB, Welsh JA, et al. Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Front Immunol. 2018;9:1326.
  • Oksvold MP, Neurauter A, Pedersen KW. Magnetic bead-based isolation of exosomes. In: Methods in molecular biology; 2015. p. 465–481. DOI:10.1007/978-1-4939-1538-5_27.
  • Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012;56:293–304.
  • Koliha N, Wiencek Y, Heider U, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016;5:1–15.
  • Akers JC, Ramakrishnan V,  Nolan JP, et al. Comparative analysis of technologies for quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF). PLoS One. 2016;11:e0149866.
  • Smith CL. Basic confocal microscopy. Curr Protoc Neurosci. 2011;1–18. DOI:10.1002/0471142301.ns0202s56
  • Nakano A. Spinning-disk confocal microscopy – a cutting-edge tool for imaging of membrane traffic. Cell Struct Funct. 2002;27:349–355.
  • Hisada Y, Auriemma AC, Alexander W, et al. M. N. Detection of tissue factor-positive extracellular vesicles by laser scanning confocal microscopy. Thromb Res. 2017;150:65–72.
  • Lerner N, Avissar S, Beit-Yannai E. Extracellular vesicles mediate signaling between the aqueous humor producing and draining cells in the ocular system. PLoS One. 2017;12:e0171153.
  • Koga K, Matsumoto K, Akiyoshi T, et al. Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res. 2005;25:3703–3707.
  • Verweij FJ, Revenu C, Arras G, et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev Cell. 2019;48:573–589.e4.
  • Oh HJ, Shin Y, Chung S, et al. Convective exosome-tracing microfluidics for analysis of cell-non-autonomous neurogenesis. Biomaterials. 2017;112:82–94.
  • Jiang X, Zong S, Chen C, et al. Gold–carbon dots for the intracellular imaging of cancer-derived exosomes. Nanotechnology. 2018;29:175701.
  • Stickney Z, Losacco J, McDevitt S, et al. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun. 2016;472:53–59.
  • Grange C, Tapparo M, Bruno S, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med. 2014;33:1055–1063.
  • van der Vos KE, Abels ER, Zhang X, et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol. 2016;18:58–69.
  • Garofalo M, Villa A, Rizzi N, et al. Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles for cancer therapies. Viruses. 2018;10:558.
  • Zomer A, Maynard C, Verweij F, et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161:1046–1057.
  • Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 2000;198:82–87.
  • Galbraith CG, Galbraith JA. Super-resolution microscopy at a glance. J Cell Sci. 2011;124:1607–1611.
  • Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–795.
  • Axelrod D. Chapter 7 total internal reflection fluorescence microscopy. Methods Cell Biol. 2008;89:169–221.
  • Polanco JC, Li C, Durisic N, et al. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathol Commun. 2018;6:10.
  • Chen C, Zong S, Wang Z, et al. Visualization and intracellular dynamic tracking of exosomes and exosomal miRNAs using single molecule localization microscopy. Nanoscale. 2018;10:5154–5162.
  • Oleksiuk O, Abba M, Tezcan KC, et al. Single-molecule localization microscopy allows for the analysis of cancer metastasis-specific miRNA distribution on the nanoscale. Oncotarget. 2015;6:44745–44757.
  • Chen C, Zong S, Wang Z, et al. Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope. ACS Appl Mater Interfaces. 2016;8:25825–25833.
  • Willig KI, Rizzoli SO, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature. 2006;440:935–939.
  • ONI. A guide to imaging extracellular vesicles with super-resolution microscopy. ONI Application note. 2019. Available from: https://oni.bio/extracellular-vesicles
  • Bachmann M, Fiederling F, Bastmeyer M. Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM. J Microsc. 2016;262:306–315.
  • Westphal V, Rizzoli SO, Lauterbach MA, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science. 2008;320:246–249.
  • Godin AG, Lounis B, Cognet L. Super-resolution microscopy approaches for live cell imaging. Biophys J. 2014;107:1777–1784.
  • Chang CW, Sud D, Mycek MA. Fluorescence lifetime imaging microscopy. Methods Cell Biol. 2007;81:495–524.
  • Gerritsen HC, Agronskaia AV, Bader AN, et al. Time domain FLIM: theory, instrumentation, and data analysis. Fret and flim techniques. Elsevier B.V, Oxford, UK; 2009. p. 33.
  • Saari H, Lisitsyna E, Rautaniemi K, et al. FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel. J Control Release. 2018;284:133–143.
  • Grela E, Piet M, Luchowski R, et al. Imaging of human cells exposed to an antifungal antibiotic amphotericin B reveals the mechanisms associated with the drug toxicity and cell defence. Sci Rep. 2018;8:14067.
  • Suhling K, French PMW, Phillips D. Time-resolved fluorescence microscopy. Photochem Photobiol Sci. 2005;4:13–22.
  • Henderson RK., Johnston N, Chen H, et al. A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology. In: IEEE 44th European Solid State Circuits Conference (ESSCIRC) Proc., Dresden, Germany, 2018. p. 54–57.
  • Wong F, Coban O, Weitsman G, et al. Integrating imaging, exosome and protein network rewiring information to track early tumour evolution of resistance mechanisms. Converg Sci Phys Oncol. 2017;3:013004.
  • Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:21933.
  • Gao X, Ran N, Dong X, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 2018;10:eaat0195.
  • Polanco JC, Scicluna BJ, Hill AF, et al. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J Biol Chem. 2016;291:12445–12466.
  • Leavesley SJ, Rich TC. Overcoming limitations of FRET measurements. Cytometry Part A. 2016;89:325–327.
  • Liu Y, Lu Q. Extracellular vesicle microRNAs: biomarker discovery in various diseases based on RT-qPCR. Biomark Med. 2015;9:791–805.
  • Chiriacò M, Bianco M, Nigro A, et al. Lab-on-chip for exosomes and microvesicles detection and characterization. Sensors. 2018;18:3175.
  • Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141:450–460.
  • Son KJ, Rahimian A, Shin D-S, et al. Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. Analyst. 2016;141:679–688.
  • Hu J, Sheng Y, Kwak KJ, et al. A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection. Nat Commun. 2017;8:1683.
  • Kanwar SS, Dunlay CJ, Simeone DM, et al. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014;14:1891–1900.
  • Friedrich R, Block S, Alizadehheidari M, et al. A nano flow cytometer for single lipid vesicle analysis. Lab Chip. 2017;17:830–841.
  • Cheung L, Sahloul S, Orozaliev A, et al. Rapid detection and trapping of extracellular vesicles by electrokinetic concentration for liquid biopsy on chip. Micromachines. 2018;9:306.
  • Reátegui E, van der Vos KE, Lai CP, et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun. 2018;9:175.
  • Chen C, Skog J, Hsu C-H, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10:505–511.
  • He M, Crow J, Roth M, et al. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014;14:3773–3780.
  • Ko J, Hemphill MA, Gabrieli D, et al. Smartphone-enabled optofluidic exosome diagnostic for concussion recovery. Sci Rep. 2016;6:31215.
  • Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16:3033–3042.
  • Liu C, Xu X, Li B, et al. Single-exosome-counting immunoassays for cancer diagnostics. Nano Lett. 2018;18:4226–4232.
  • Jørgensen M, Bæk R, Pedersen S, et al. Extracellular Vesicle (EV) array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J Extracell Vesicles. 2013;2:20920.
  • Jørgensen MM, Bæk R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) array. J Extracell Vesicles. 2015;4:26048.
  • Belov L, Hallal S, Matic K, et al. Surface profiling of extracellular vesicles from plasma or ascites fluid using dotscan antibody microarrays. In: Greening D., Simpson R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, 2017.p. 263–301. New York, NY: Humana Press. doi:10.1007/978-1-4939-7057-5_20.
  • Birch DJS, Holmes AS, Imhof RE. PPO excimers in lipid bilayers studied using single-photon timing array detection. Chem Phys Lett. 1988;148:435–444.
  • Bisby RH, Birch DJS. A time-resolved fluorescence anisotropy study of bilayer membranes containing alpha-tocopherol. Biochem Biophys Res Commun. 1989;158:386–391.
  • Holmes AS, Birch DJS, Suhling K, et al. Evidence for donor-donor energy transfer in lipid bilayers: perylene fluorescence quenching by CO2+ ions. Chem Phys Lett. 1991;186:189–194.
  • Holmes AS, Birch DJS, Sanderson A, et al. Time-resolved fluorescence photophysics of trans-stilbene in a DPPC lipid bilayer: evidence for a free rotation, location within two sites and a pre-liquid crystalline phase transition. Chem Phys Lett. 1997;266:309–316.
  • Schachter D, Shinitzky M. Fluorescence polarization studies of rat intestinal microvillus membranes. J Clin Invest. 1977;59:536–548.
  • Shinitzky M, Inbar M. Microviscosity parameters and protein mobility in biological membranes. BBA - Biomembr. 1976;433:133–149.
  • Troup GM, Wrenn SP, Apel-Paz M, et al. A time-resolved fluorescence diphenylhexatriene (DPH) anisotropy characterization of a series of model lipid constructs for the sperm plasma membrane. Ind Eng Chem Res. 2006;45:6939–6945.
  • Ben-Dov N, Korenstein R. Proton-induced endocytosis is dependent on cell membrane fluidity, lipid-phase order and the membrane resting potential. Biochim Biophys Acta - Biomembr. 2013;1828:2672–2681.
  • Laulagnier K, Motta C, Hamdi S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;380:161–171.
  • Rejraji H, Sion B, Prensier G, et al. Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation1. Biol Reprod. 2006;74:1104–1113.
  • Shenoy GN, Loyall J, Maguire O, et al. Exosomes associated with human ovarian tumors harbor a reversible checkpoint of T-cell responses. Cancer Immunol Res. 2018;6:236–247.
  • Suhling K, Levitt J, Chung PH. Time-resolved fluorescence anisotropy imaging. Methods Mol Biol. 2014;4:503–519.
  • Bachurski D, Schuldner M, Nguyen P-H, et al. Extracellular vesicle measurements with nanoparticle tracking analysis–an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles. 2019;8:1596016.
  • Lee K, Fraser K, Ghaddar B, et al. Multiplexed profiling of single extracellular vesicles. ACS Nano. 2018;12:494–503.
  • Poland SP, Krstajić N, Monypenny J, et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging. Biomed Opt Express. 2015;6:277.
  • McLoskey D, Birch DJS, Sanderson A, et al. Multiplexed single-photon counting 1: A time-correlated fluorescence lifetime camera. Rev Sci Instrum. 1996;67:2228–2237.
  • Zhang Y, Guoke W, Yu J, et al. Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection. Faraday Discuss. 2015;178:383–394.