387
Views
241
CrossRef citations to date
0
Altmetric
Research Article

Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays

&
Pages 441-519 | Published online: 29 Sep 2008

REFERENCES

  • Weissman SI. Intramolecular energy transfer, the fluorescence of complexes of europium J Chem Phys 1940; 10: 214–7.
  • Zotikov AA, Polyakov YS. The use of the phosphorescence microscope for the study of the phosphorescence of various cells. Microsc Acta 1977; 79: 415–8.
  • Wieder I. Background rejection in fluorescence immunoassay. In W Knapp, K Holubar and G Wick (eds.) Immunofluorescence and Related Staining Techniques. Proc Vlth International Conference on Immunofluorescence and Related Staining Techniques, Vienna 1978; 67–80.
  • Soini E, Hemmila I. Fluoroimmunoassays: Present status and key problems. Clin Chem 1979; 25: 353–61.
  • Araki T, Misawa H. Light emitting diode-based nanosecond ultraviolet light source for fluorescence lifetime measurements. Rev Sci Instrum 1995; 66: 5469–73.
  • Sipior J, Carter GM, Lakowicz JR, et al. Single quantum well light emitting diodes demonstrated as excitation source for nanosecond phase-modulation fluorescence lifetime measurements. Rev Sci Instrum 1996; 67: 3795–8.
  • Sipior J, Carter GM, Lakowicz JR, et al. Blue light-emitting diode demonstrated as an ultraviolet excitation source for nanosecond phase-modulation fluorescence lifetime measurements. Rev Sci Instrum 1997; 68: 2666–70.
  • Rabinovich EM, O'Brien M, Srinivasan B, et al. A compact, LED-based phase fluorimeter detection system for chemical and biosensor arrays. Proc SPIE 1998; 3258: 2–10.
  • Yguerabide J. Nanosecond fluorescence spectroscopy of macromolecules. Methods Enzymol 1972; 498–579.
  • Ambrose WP, Goodwin PM, Martin JC, et al. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 1994; 265: 364–7.
  • Brand L, Eggeling C, Zander C, et al. Single-molecule identification of coumarin-120 by time-resolved fluorescence detection: Comparison of one- and two-photon excitation in solution. J Phys Chem A 1997; 101: 4313–21.
  • Fries JR, Brand L, Eggeling C, et al. Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. J Phys Chem A 1998; 102: 6601–13.
  • Sauer M, Han K-T, Muller R, et al. New fluorescent dyes in the red region for biodiagnostics. J Fluorescence 1995; 5: 247–61.
  • Sauer M, Arden-Jacob J, Drexhage KH, et al. On-line diode laser based time-resolved fluorescence detection of labelled oligonucleotides in capillary gel electrophoresis. Biomed Chromatogr 1997; 11: 81–2.
  • Sauer M, Arden-Jacob J, Drexhage K, et al. Time-resolved identification of individual mono-nucleotide molecules in aqueous solution with pulsed semiconductor lasers. Bioimaging 1998; 6: 14–24.
  • Dochio F, Ramponi R, Sacchi CA, et al. An automatic pulsed laser microfluorometer with high spatial and temporal resolution. J Microsc 1984; 134: 151–60.
  • Srivastava A, Krishnamoorthy G. Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH. Anal Biochem 1997; 249: 140–6
  • Srivastava A, Krishnamoorthy G. Cell type and spatial location dependence of cytoplasmic viscosity measured by time-resolved fluorescence microscopy. Arch Biochem Biophys 1997; 340: 159–67.
  • Matsumoto H, Kitamura S, Araki T. Autofluorescence in human dentine in relation to age, tooth type and temperature measured by nanosecond time-resolved fluorescence microscopy. Arch Oral Biol 1999; 44: 309–18.
  • Lovejoy C, Holowka DA, Cathou RE. Nanosecond fluorescence spectroscopy of pyrenebutyrate-anti-pyrene antibody complexes. Biochemistry 1977; 16: 3668–72.
  • Jovin TM, Vaz WLC. Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods. Methods Enzymol 1989; 172: 471–513.
  • Seidlitz HK, Schneckenburger H, Stettmaier K. Time-resolved polarization measurement of porphyrin fluorescence in solution and in single cells. J Photochem Photobiol B Biol 1990; 5: 391–400.
  • Lo MMS, Garland PB, Lamprecht J, et al., Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarization. FEBS Lett 1980; 111: 407–12.
  • Bartholdi M, Barrantes FJ, Jovin TM. Rotational molecular dynamics of the membrane-bound acetyl-choline receptor revealed by phosphorescence spectroscopy. Eur J Biochem 1981; 120: 389–97.
  • Austin RH, Chan SS, Jovin TM. Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy. Proc Natl Acad Sci USA 1979; 76: 5650–4.
  • Schneckenburger H. Time-resolved microfluorescence in biomedical diagnosis. Proc SPIE 1984; 491: 363–6.
  • Konig K, Boehme S, Leclerc N, et al. Time-gated autofluorescence microscopy of motile green microalga in an optical trap. Cell Mol Biol 1998; 44: 763–70.
  • Kusumi A, Tsuji A, Murata M, et al. Development of a streak-camera-based time-resolved microscope fluorometer and its application to studies of membrane fusion in single cells. Biochemistry 1991; 30: 6517–27.
  • Geggier P, Fuhr G. A time-resolved total internal reflection aqueous fluorescence (TIRAF) microscope for the investigation of cell adhesion dynamics. Appl Phys 1999; A 68: 505–13.
  • Huglin D, Seiffert W, Zimmermann HW. Time-resolved microfluorometric study of the binding of lipophilic cationic pyrene probes in mitochondria of living HeLa cells. J Photochem Photobiol 1995; 31: 145–58.
  • Edman L. Mets U, Rigler R. Conformational transitions monitored for single molecules in solution. Proc Natl Acad Sci USA 1996; 93: 6710–5.
  • Edman L, Wennmalm S, Tamsen F, Rigler R. Heterogeneity in single DNA conformations. Chem Phys Lett 1998; 292: 15–21
  • So PTC, Konig K, Berland K, et al. New time-resolved techniques in two-photon microscopy. Cell Mol Biol 1998; 44: 771–93.
  • Konig K, So PTC, Mantulin WW, et al. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J Microscopy 1996; 183: 197–204.
  • Jovin TM, Arndt-Jovin DJ. Luminescence digital imaging microsc. Annu Rev Biochem Biophys Chem 1989; 18: 271–308.
  • Seveus L, Vaisala M, Syrjanen S, et al. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytometry 1992; 13: 329–38.
  • Verwoerd NP, Hennink EJ, Bonnet J, et al. Use of ferro-electric liquid crystal shutters for time-resolved fluorescence microscopy. Cytometry 1994; 16: 113–7.
  • Marriott G, Clegg RM, Arndt-Jovin DH, Jovin TM. Time-resolved imaging microscopy: Phosphorescence and delayed fluorescence imaging. Biophys J 1991; 60: 1374–86.
  • Hennink EJ, de Haas R, Verwoerd NP, et al. Evaluation of a time-resolved fluorescence microscope using a phosphorescent Pt-porphine model system. Cytometry 1996; 24: 312–20.
  • Phimpivong S, Kolchens S, Edmiston PL, et al. Time-resolved, total internal reflection fluorescence microscopy of cultured cells using a Tb chelate label. Anal Chim Acta 1995; 307: 403–17.
  • Soini E, Lovgren T. Time-resolved fluorescence of lanthanide probes and applications in biotechnology. CRC Crit Rev Anal Chem 1987;18:105–54.
  • Diamandis EP. Immunoassay with time-resolved fluorescence spectroscopy: Principles and applications. Clin Biochem 1988; 21: 139–50.
  • Hemmila I. Applications of Fluorescence in Immunoassays. Wiley Interscience, New York. 1990.
  • Hemmila I, Harju R. Time-resolved fluorometry. In I Hemmila, T Stahlberg and P Mottram (eds) Bioanalytical Applications of Labelling Technologies, EG&G Wallac, Turku, 1994: pp.83–119.
  • Soini E, Kojola H. A Time-resolved fluorometer for lanthanide chelates — a new generation of nonisotopic immunoassays. Clin Chem 1983; 29: 65–8.
  • Stanley PE. Commercially available fluorometers, luminometers and imaging devices for low-light level measurements and allied kits and reagents: survey update 6. Luminescence 1999; 14: 201–13.
  • Zubritsky E. Microplate fluorometers reach critical mass. Anal Chem 1999;: 39-43A.
  • Evangelista RA, Pollak A, Templeton EF. Enzyme-amplified lanthanide luminescence for enzyme detection in bioanalytical assays. Anal Biochem 1991; 197: 213–24.
  • Lakowicz JR. A review of photon-counting and phase-modulation measurements of fluorescence decay kinetics. In DL Taylor, AS Waggoner, RF Murphy, F Lanni and RR Birge (eds), Applications of Fluorescence in the Biomedical Sciences, Alan R. Liss Inc, New York, 1986.
  • Lakowicz JR, Jayaweera R, Joshi N, et al. Correction for contaminant fluorescence in frequency-domain fluorometry. Anal Biochem 1987; 160: 471–9.
  • Reinhart GD, Marzola P, Jameson DM, et al. A method for on-line background subtraction in frequency domain fluorometry. J Fluorescence 1991; 1: 153–62.
  • Periasamy N, Verkman AS. Subtraction of background fluorescence in multiharmonic frequency-domain fluorimetry. Anal Biochem 1992; 201: 107–13.
  • McGown LB. Fluorescence lifetime filtering. Anal Chem 1989; 61: 839A-47A.
  • Seitzinger NK, Hughes KD, Lytle FE. Optimization of signal-to-noise ratios in time-filtered fluorescence detection. Anal Chem 1989; 61: 2611–5.
  • Lakowicz JR, Szmacinski, Nowaczyk K, et al. Fluorescence lifetime imaging. Anal Biochem 1992; 202: 316–30.
  • Lakowicz JR, Szmacinski H, Nowaczyk K, et al. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci USA 1992; 89: 1271–5.
  • Lakowicz JR. Emerging applications of fluorescence spectroscopy to cellular imaging: lifetime imaging, metal-ligand probes, multi-photon excitation and light quenching. Scanning Microsc Suppl 1996; 10: 213–24.
  • Gadella TWJ, Jovin TM. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J. Cell Biol. 129: 1543–58 (1995).
  • Gadella TWJ Jr, Jovin TM, Clegg RM. Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale. Biophys Chem 1993; 48: 221–39.
  • Clegg RM, Gadella TWJr, Jovin TM. Lifetime-resolved fluorescence imaging. Proc SPIE 1994; 2137: 105–18.
  • Oida T, Sako Y, Kusumi A. Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells. Biophys J 1993; 64: 677–85.
  • Deka C, Cram LS, Habbersett R, et al. Simultaneous dual-frequency phase sensitive flow cytometric measurement for rapid identification of heterogeneous fluorescence decays in fluorochrome-labelled cells and particles. Cytometry 1995; 21: 94–101.
  • Deka C, Lehnert BE, Lehnert NM, et al. Analysis of fluorescence lifetime and quenching of FITC-conjugated antibodies on cells by phase-sensitive flow cytometry. Cytometry 1996; 25: 271–9.
  • Beisker W, Klocke A. Fluorescence lifetime measurement in flow cytometry. Proc SPIE 1997; 2982: 436–46.
  • Steinkamp JAA, Crissman HA, Lehnert BE, et al. Frequency-domain flow cytometry: Fluorescence lifetime-based sensing technology for analyzing cells and chromosomes labeled with fluorescent probes. Proc SPIE 1997; 2980: 96–106.
  • Steinkamp JA, Lehnert BE, Lehnert NM. Discrimination of damaged/dead cells by propidium iodide uptake in immunofluorescently labeled populations analyzed by phase-sensitive flow cytometry. J Immunol Methods 1999; 226: 59–70.
  • Kej JF, Steinkamp JA. Flow cytometric characterization and classification of multiple dual-color fluorescent microspheres using fluorescence lifetime. Cytometry 1998; 33: 318–23.
  • Kirschstein S, Winter S, Turner D, et al. Detection of the AF508 mutation in the CFTR gene by means of time-resolved fluorescence methods. Bioelectrochem Bioenerg 1999; 48: 415–21.
  • French T, Bailey B, Stumbo DP, et al. A time-resolved fluorometer for high-throughput screening. Proc SPIE 1999; 3603: 272–80.
  • Lakowicz JR, Gryczynski I, Malak H, et al. Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation. Biophys J 1997; 72: 567–78.
  • Piston DW, Sandison DR, Webb WW. Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy. Proc SPIE 1992; 1640: 37989.
  • Dong CY, So PTC, French T, et al. Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys J 1995; 69: 2234–42.
  • Kungl AJ, Visser NV, van Hoek A, et al. Time-resolved fluorescence anisotropy of HIV-1 protease inhibitor complexes correlates with inhibitory activity. Biochemistry 1998; 37: 277886.
  • Bialik CN, Wolf B, Rachofsky EL, et al. Dynamics of biomolecules: Assignment of local motions by fluorescence anisotropy decay. Biophys J 1998; 75: 2564–73.
  • Weltman JK, Szaro RP, Frackelton R, et al. N-(3-Pyrene)maleimide: A long lifetime fluorescent sulfhydryl reagent. J Biol Chem 1973; 248: 3173–7.
  • Morrison LE. Time resolved detection of energy transfer: Theory and application to immu-noassays. Anal Biochem 1988; 174: 101–20.
  • Barrantes FJ, Sakmann B, Bonner R, et al. 1-pyrene-butyrylcholine: A fluorescent probe for the cholinergic system. Proc Natl Acad Sci USA 1975; 72: 3097–101.
  • Kawasaki Y, Mihashi K, Tanaka H, et al. Fluorescence study of N-(3-pyrene)maleimide conjugated to rabbit skeletal F-actin and plasmodium actin polymers. Biochim Biophys Acta 1976; 446: 166–78.
  • Andreoni A, Bottiroli G, Colasanti A, et al. Fluorochromes with long-lived fluorescence as potential labels for pulsed laser immunocytofluorometry: photophysical characterization of pyrene derivatives. J Biochem Biophys Methods 1994; 29: 157–72.
  • Schneckenburger H, Unsold E. Time-resolved ultrasensitive fluorescence detection for enzyme analysis. In: P Bratter and P Schammer (eds) Trace Element Analytical Chemistry in Medicine and Biology, Vol 2, Walter De Gruyter & Co, Berlin 1983.
  • Azimi NT, Wen F, Lister RM, et al. Enzyme-linked immunoassay using nanosecond fluoro-metric detection. Appl Spectrosc 1992; 46: 994–8.
  • Galla K, Arden-Jacob J, Deltau G, et al. Simultaneous antigen detection using multiplex dyes. J Fluorescence 1994; 4: 111–5
  • Sauer M, Arden-Jacob J, Drexhage K, et al. Time-resolved identification of individual mono-nucleotide molecules in aqueous solution with pulsed semiconductor lasers. Bioimaging 1998; 6: 14–24.
  • Lieberwirth U, Arden-Jacob J, Drexhage KH, et al. Multiplex dye DNA sequencing in capillary gel electrophoresis by diode laser-based time-resolved fluorescence detection. Anal Chem 1998; 70: 4771–9.
  • Flanagan JH, Owens CV, Romero SE, et al. Near-infrared heavy-atom-modified fluorescent dyes for base-calling in DNA-sequencing applications using temporal discrimination. Anal Chem 1998; 70: 2676–84.
  • Waddell E, Wang Y, Stryjewski W, et al. High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes. Anal Chem 2000; 72: 5907–17.
  • Nithipatikom K, McGown LB. Homogeneous immunochemical technique for determination of human lactoferrin using excitation transfer and phase-resolved fluorometry. Anal Chem 1987; 59: 423–7.
  • Tahboub YR, McGown LB. Phase-resolved fluoroimmunoassay of human serum albumin. Anal Chim Acta 1986; 182: 185–91.
  • He Y, Geng L. Phase-sensitive fluorescence lifetime detection in capillary electrophoresis. Anal Chem 2001; 73: 943–50.
  • Morgan CG, Mitchell AC, Murray JG. Fluorescence decay time imaging using an imaging photon detector with a radiofrequency photon correlation system. Proc SPIE 1990; 1204: 798807.
  • Morgan CG, Mitchell AC, Murray JG. Nanosecond time-resolved fluorescence microscopy; principle and practice. Trans Royal Microscop Soc 1990; 1: 463–66.
  • Lakowicz JR, Szmacinski H, Nowaczyk K, et al. Fluorescence lifetime imaging of calcium using Quin-2. Cell Calcium 1992; 13: 131–47.
  • Glick MR, Winefordner JD. Development of a solid-substrate room-temperature luminescence immunoassay. Clin Chem 1988; 60: 1982–4.
  • Scypinski S, Cline Love LJC. Room-temperature phosphorescence of polynuclear aromatic hydrocarbons in cyclodextrins. Anal Chem 1984; 56: 322–7.
  • Sidki AM, Smith DS, Landon J. Direct homogeneous phosphoroimmunoassay for carbamazepine in serum. Clin Chem 1986; 32: 53–6.
  • Savitsky AP, Papkovskii DB, Ponomarev GV, et al. Phosphorescence immunoassay. Are metalloporphyrins an alternative to rare earth fluorescent labels. Dokl Akad Nauk SSSR (Eng translation) 1988; 304: 1005–8 (translation 48-51).
  • Savitsky AP, Ponomarev GV, Lobanov OI, et al. Room-temperature phosphorescence of metalloporphyrins and its application to immunoassay. Proc SPIE 1994; 2136: 285–98.
  • Jovin TM, Bartholdi M, Vaz WLC. Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy. Ann NY Acad Sci 1981; 366: 176–96.
  • Conzales-Rodriguez J, AcuOa AU, Alvarez MW, et al. Rotational mobility of the fibrinogen receptor glycoprotein IIb/IIIa or integrin aIIbP3 in the plasma membrane of human platelets. Biochemistry 1994; 33: 266–74.
  • Eastwood DL, Gouterman M. Porphyrin XVIII: Luminescence of (Co), (Ni), Pd, Pt complexes. J Mol Spectrosc 1970; 35: 359–75.
  • DeHaas RR, van Gijlswijk RPM, van der Tol EB, et al. Platinum porphyrins as phosphorescent label for time-resolved microscopy. J Histochem Cytochem 1997; 45: 1279–92.
  • DeHaas RR, van Gijlswijk RPM, van der Tol EB, et al. Phosphorescent platinum/palladium coproporphyria for time resolved luminescence microscopy. J Histochem Cytochem 1999; 47: 183–96.
  • Melnikova YA, Kravchuk ZI, Preygerzon VA, et al. Functional activation of antibodies on modification with Pd(II) coproporphyrin I N-hydroxysuccinimide ester. Biochem (Moscow) 1997; 62: 924–7.
  • Mantrova Eyu, Demcheva MV, Savitsky AP. Universal phosphorescence immunoassay. Anal Biochem 1994; 219: 109–14.
  • Cubeddu R, Ramponi R, Taroni P, Canti G, Ricci L, Supino R. Time-gated fluorescence spectroscopy of porphyrin derivatives incorporated into cells. J. Photochem. Photobiol. B. 3948 (1990).
  • Wessels JM, Strauss W, Seidlitz HK, et al. Intracellular localization of meso-tetraphenylporphine tetrasulphonate probed by time-resolved and microscopic fluorescence spectroscopy. J Photochem Photobiol 1992; 12: 275–84.
  • Schneckenburger H. Time resolved microfluorescence in biomedical diagnosis. Optical Engineering 1985; 24:1042–4.
  • Spizzirri PG, Hill JS, Kahl SB, et al. Time-resolved confocal fluorescence microscopy of porphyrins for phototherapy. Lasers Med Sci 1996; 11: 237–46.
  • Philpott CJ, Rahman NA, Kenny N, et al. Rotational dynamics of luteinizing hormone receptors and MHC Class I antigens on murine Leydig cells. Biochim Biophys Acta 1995; 1235L: 62–8.
  • Kumar CV, Barton JK, Turro NJ. Photophysics of ruthenium complexes bound to double helical DNA. J Am Chem Soc 1985; 107: 5518–23.
  • Demas JN, Crosby GA. Quantum efficiencies on transition metal complexes. II. Charge-transfer luminescence J Am Chem Soc 1971; 93: 2841–7.
  • Terpetschnig E, Szmacinski H, Lakowicz JR. Long-lifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol 1997; 278: 295–321.
  • McNamara KP, Rosenzweig Z. Dye-encapsulating liposomes as fluorescence-based oxygen nanosensors. Anal Chem 1998; 70: 4853–9.
  • Nakamaru K. Synthesis, luminescence quantum yields, and lifetimes of trischelated ruthenium(II) mixed-ligand complexes including 3,3'-dimethyl-2,2'-bipyridyl. Bull Chem Soc Jpn. 1982; 55: 2697–705.
  • Kosch U, Klimant I, Wermer T, et al. Strategies to design pH optodes with luminescence decay times in the microsecond time regime. Anal Chem 1998; 70: 3892–7.
  • Castellano FN, Lakowicz JR. A water-soluble luminescence oxygen sensor. Photochem Photobiol 1998; 67: 179–83.
  • Carter MT, Bard AJ. Electrochemical investigation of the interaction of metal chelates with DNA. 3. Electrogenerated chemiluminescent investigation of the interaction of tris(1,10-phenanthroline)ruthenium(II) with DNA. Bioconjugate Chem 1990; 1: 257–63.
  • Bannwarth W, Schmidt D, Stallard RL, et al. Sixth Int Cong on Rapid Methods and Automation in Microbiology and Immunology, Espoo, Finland, 1990.
  • Bannwarth W, Schmidt D. A simple specific labelling for oligonucleotides by bathophenanthroline-Ru II complexes as nonradioactive label molecules. Tetrahedr Lett 1989; 30: 1513–6.
  • Bannwarth W, Schmidt D, Stallard RL et al. Bathophenanthroline-ruthenium(II) complexes as non-radioactive labels for oligonucleotides can be measured by time-resolved fluorescence techniques. Helv Chim Acta 1988; 71: 2085–99.
  • Thompson RB, Vallarino LM. Novel fluorescent label for time-resolved fluorescence immunoassay. Proc SPIA Int Soc Opt Eng 1988; 909: 426–33.
  • Ryan EM, O'Kennedy R, Feeney MM, et al. Covalent linkage of ruthenium polypyridyl compounds to poly(L-lysine), albumins, and immunoglobulin G. Bioconjugate Chem 1992; 3: 285–90.
  • Ortmans I, Content S, Boutonnet N, et al. Ru-labeled oligonucleotides for photoinduced reactions on targeted DNA guanines. Chem Eur J 1999; 5: 2712–21.
  • Terpetschnig E, Szmacinski H, Lakowicz JR. Fluorescence polarization immunoassay of a high-molecular-weight antigen based on a long-lifetime Ru-ligand complex. Anal Biochem 1995; 227: 140–7.
  • Smacinski H, Castellano FN, Terpetschnig E, et al. Long-lifetime Ru(II) complexes for the measurement of high molecular weight protein hydrodynamics. Biochem Biophys Acta 1998; 1383: 151–9.
  • Li L, Szmacinski H, Lakowicz JR. Synthesis and luminescence spectral characterization of long-lifetime lipid metal-ligand probes. Anal Biochem 1997; 244: 80–5.
  • Youn HJ, Terpetschnig E, Szmacinski H, et al. Fluorescence energy transfer immunoassay based on a long-lifetime luminescent metal-ligand complex. Anal Biochem 1995; 232: 24–30.
  • Terpetschnig E, Dattelbaum JD, Szmacinski H, et al. Synthesis and spectral characterization of a thiol-reactive long-lifetime Ru(II) complex. Anal Biochem 1997; 251: 241–5.
  • Sacksteder LA, Lee M, Demas JN, et al. Long-lived, highly luminescent rhenium(II) complexes as molecular probes: Intra- and intermolecular excited-state interactions. J Am Chem Soc 1993; 115: 8230–8.
  • Guo X-Q, Castellano FN, Li L, Lakowicz JR. Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassay of high-molecular-weight analytes. Anal Chem 1998; 70: 632–7.
  • Terpetschnig E, Szmacinski H, Lakowicz JR. Fluorescence polarization immunoassay of a high-molecular-weight antigen using a long wavelength-absorbing and laser diode-excitable metal-ligand complex. Anal Biochem 1996; 240: 54–9.
  • Murtaza Z, Herman P, Lakowicz JR. Synthesis and spectral characterization of a long-lifetime osmium (II) metal-ligand complex: a conjugatable red dye for applications in biophysics. Biophys Chem 1999; 80: 143–51.
  • Murphy CCJ, Barton JK. Ruthenium complexes as luminescent reporters of DNA. Methods Enzymol 1993; 226: 576–94.
  • Malak H, Gryczynski I, Lakowicz JR, et al. Long-lifetime metal-ligand complexes as luminescent probes for DNA. J Fluorescence 1997; 7: 107–12.
  • Jenkins Y, Friedman AE, Turro NJ, et al. Characterization of dipyridophenazine complexes of ruthenium(II): The light switch effect as a function of nucleic acid sequence and conformation. Biochemistry 1992; 31: 10809–16.
  • Tyson DS, Bialecki J, Castellano FN. Ruthenium complex with a notably long excited state lifetime. Chem Commun 2000; 23: 2355–6.
  • Ketring AR. 153Sm-EDTMP and 186Re-HEDP as bone therapeutic radiopharmaceuticals. Nucl Med Biol 1987; 14: 223–32.
  • Kulmala S, Ala-Kleme T, Latva M, et al. Hot electron-induced electrogenerated chemilumi-nescence of rare earth(III) chelates at oxide-covered aluminium electrodes. J Fluorescence 1998; 8: 59–65.
  • Gudgin Dickson EF, Pollak A, Diamandis EP. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J Photochem Photobiol 1995; 27: 3–19.
  • Sammes PG, Yahioglu G. Modern bioassays using metal chelates as luminescent probes. Nat Prod Rep 1996; 13: 1–28.
  • Hemmila I, Mukkala V-M, Takalo H. Development of luminescent lanthanide chelate labels for diagnostic assays. J Alloys Comp 1997; 249: 158–62.
  • Horrocks W DeW Jr, Sudnick DR, Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J Am Chem. Soc. 1979; 101: 334–40.
  • Hemmila I, Mukkala V-M, Takalo H. Effect of C-H bonds on the quenching of luminescent lanthanide chelates. J Fluorescence 1995; 5: 159–63.
  • Hemmila I. Optimized chelate-labels for homogeneous and heterogeneous screening assays. In W. Hori and LM Savage (eds.) High-Throughput Screening II. Novel Assay Design, Rapid Target Development and Accelerated Level Optimization. IBC Library Series, Southborough, MA 1997, p. 211–36.
  • Mathis G. Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 1993; 39: 1953–9.
  • Hemmila I, BAtsman A. Time-resolved immunofluorometry of hCG Clin Chem 1988; 34: 1163.
  • Faulkner S, Beeby A, Dickins RS, et al. Generating a warm glow: Lanthanidecomplexes which luminesce in the near-IR. J Fluorescence 1999; 9: 45–9.
  • Buono-Cuore GE, Li H, Marciniak B. Quenching of excited states by lanthanide ions and chelates in solution. Coord Chem Rev 1990; 99: 55–87.
  • Oude Wolbers MP, van Veggel FCJM, Heeringa RHM, et al. Biscalix[4]arene ligands for dinuclear lanthanide ion complexation. Liebigs Ann Recl 1997; 2587–600.
  • Sabbatini N, De Cola L, Vallarino LM, Blasse G. Radiative and nonradiative transitions in the Eu(III) hexaaza macrocyclic complex [Eu(C22H26N6)(CH3COO)](CH3COO) Cl x2 H2O. J Phys Chem 91; 4681–5 (1987).
  • Latva M, Takalo H, Mukkala V-M, et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Luminescence 1997; 75: 149–69.
  • Hemmila I. Lanthanides as probes for time-resolved fluorometric immunoassays. Scand J Clin Lab Invest 1988; 48: 389–400.
  • Hemmila I. Photoluminescence immunoassays. In AP Johnstone and MW Turner (ed.) Immu-nochemistry. A Practical Approach. IRL Press, New York, 1997; 117: 193–214.
  • Moutiez E, Prognon P, Bourrinet P, et al. Time-resolved luminescence as a novel detection mode for simultaneous high-performance liquid chromatographic determination of gado-linium-DOTA and Gd3+. Analyst 1997; 122: 1347–52.
  • Werts MH, Hofstraat JW, Geurts FAJ, Verhoeven JW. Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates. Chem Phys Lett 1997; 276: 196–201.
  • Steemers FJ, Verboom W, Hofstraat JW, Geurts FAJ, and Reinhoudt DN. Near-infrared luminescece of Yb3+, Nd3+ and Er3+ azatriphenylene complexes. Tetrahedron Lett 1998; 39: 7583–6.
  • Hofstraat JW, Oude Wolbers MP, van Veggel FCJM et al. Near-IR luminescent rare earth ion-sensitizer complexes. J Fluorescence 1998; 8: 301–8.
  • Beeby A, Dickins RS, Faulkner S et al., Luminescence from ytterbium(III) and its complexes in solution. Chem Commun 1997; 15: 1401–2.
  • Klink SI, Keizer H, van Veggel FCJM. Transition metal complexes as photosensitizers for near-infrared lanthanide luminescence. Angew Chem Int Ed 2000; 39: 4319–21.
  • Werts MHV, Woudenberg RH, Emmerink PG, et al. A near-infrared luminescent label based on YbIII ions and its application in a fluoroimmunoassay. Angew Chem Int Ed 2000; 39: 4542–4.
  • Leif RC, Clay SP, Gratzner HG, et al. Markers for instrumental evaluation of cells of the female reproductive tract: Existing and new markers. In: The Automation of Uterine Cancer Cytology, GL Wied, GF Bhar and PH Bartelo (eds.) Tutorials of Cytology, Chicago IL, 31344 (1976).
  • Hemmila I, Dakubu S, Mukkala V-M, et al. Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 1984; 137: 335–43.
  • Hemmila I, Soini E, Lovgren T. Time-resolved fluoroimmunoassay (TR-FIA). Fresenius Z Anal Chem 1982; 311: 357.
  • Meurman OH, Hemmila I, Lovgren T, et al. Time-resolved fluoroimmunoassay: a new test for Rubella antibodies. J Clin Microbiol 1982; 16: 920–5.
  • Pettersson K, Siitari H, Hemmila I, et al. Time-resolved fluoroimmunoassay of human choriogonadotropin. Clin Chem 1983; 29: 60–4.
  • Siitari H, Hemmila I, Soini E, et al. Detection of Hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature 1983; 301: 258.
  • Degan P, Abbondandolo A, Montagnoli G. A new fluorescence enhancement solution for europium-based time-resolved fluoroimmunoassays. J Lumin Chemilumin 1990; 5: 207–12.
  • Hemmila I, Latva M. Double-label immunoassay using lanthanides Eu and Sm as labels for time-resolved fluorometry. J Clin Immunoassay 1990; 13: 58.
  • Hemmila I. Time-resolved fluorometric determination of terbium in aqueous solution. Anal Chem 1985; 57: 1676–81.
  • Xu Y-Y, Pettersson K, Blomberg K, et al. Simultaneous quadruple-label fluorometric immu-noassay of thyroid-stimulating hormone, 17a-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin Chem 1992; 38: 2038–43.
  • Hemmila I, Mukkala V-M, Latva M, et al. Di- and tetracarboxylate derivatives of py-ridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluoromet-ric determination of terbium and dysprosium. J Biochem Biophys Methods 1993; 26: 283–90.
  • Magennis SW, Parson S, Corval A, et al., Imidodiphosphonate ligands as antenna units in luminescent lanthanide complexes. Chem Commun 1999; 61–2.
  • Steemers FJ, Verboom W, Reinhoudt DN, et al, Diazatriphenylene complexes of Eu3+ and Tb3+; promising light-converting systems with high luminescence quantum yields. J Photochem Photobiol Chem 1998; 113: 141–4.
  • Melenteva EB, Poluektov NC, Kononenko LI. The analytical use of the fluorescence of the four-ligand beta-diketone complexes or europium and samarium with organic bases. Zh Anal Khim 1967; 22: 187–92.
  • Yang J-H, Zhu G-Y, Wu B. Enhanced luminescence of the europium/terbium/ thenoyltrifluoroacetone/1,10-phenanthroline/surfactant system. Anal Chim Acta 1987; 198: 287–92.
  • Ci Y-X, Lan Z-H. Enhanced fluorimetric determinaton of europium(III) eith thenoyltrifluoroacetone and 4,7-diphenyl-1,10-phenanthroline by gadolinium. Anal Lett 1988; 21: 1499–513.
  • Xu Y-Y, Hemmila I, Mukkala V-M, et al. Co-fluorescence of europium and samarium in time-resolved fluorimetric immunoassays. Analyst 1991; 116: 1155–8.
  • Xu Y-Y, Hemmila IA. Co-fluorescence enhancement system based on pivaloyltrifluoroacetone and yttrium for the simultaneous detection of europium, terbium, samarium and dysprosium. Anal Chim Acta 1992; 256: 9–16.
  • Xu Y-Y, Hemmila IA, Lovgren TN-E. Co-fluorescence effect in time-resolved fluoroimmunoassays. A review. Analyst 1992; 117: 1061–9.
  • McConway MG, Beastall GH. Cofluorescence enhancement improves immunofluorometric assay minimum detection limit. Ann Clin Biochem 1994; 31: 576–8.
  • McConway MG, Smith KA, Beastall GH. Development and evaluation of a direct immunofluorimetric assay for urinary growth hormone. Ann Clin Biochem 1999; 36: 649–54.
  • Jensen PE, Moore JC, Lukacher AE. A europium fluoroimmunoassay for measuring peptide binding to MHC class I molecules. J Immunol Methods 1998; 215: 71–80.
  • Sundberg MW, Meares CF, Goodwin DA, et al. Selective binding of metal ions to macromol-ecules using bifunctional analogs of EDTA. J Med Chem 1974; 17: 1304–7.
  • Milby KH, Zare RN. Antibodies, lasers, and chromatography. Am Clin Products 1984; Jan: 12–19.
  • Mukkala V-M, Mikola H, Hemmila I. The synthesis and use of activated N-benzyl derivatives of diethylenetriaminetetraacetic acids: alternative reagents for labeling of antibodies with metal ions. Anal Biochem 1989; 176: 319–25.
  • Hemmila I. Immunoassays. In: I Hemmila, T Stahlberg and P Mottram (eds) Bioanalytical Applications of Labelling Technologies. EG&G Wallac, Turku, Finalnd, 1984: 151–94.
  • Niemi P, Reisto T, Hemmila I, et al. Magnetic field dependence on longitudinal relaxation rates of solutions of various protein-gadolinium3+ chelate conjugates. Invest Radiol 1991; 26: 820–4.
  • Paajanen H, Reisto T, Hemmila I, et al. Proton relaxation enhancement of albumin, immunoglobulin G, and fibrinogen labeled with Gd-DTPA. Magn Reson Med 1990; 13: 38–43.
  • Hartikka M, Vihko P, Sodervall M, et al. Radiolabelling of monoclonal antibodies: Optimization of conjugation of DTPA to FAb#x0027;-fragments and a novel measurement of the degree of conjugation using Eu(III)-labeling. Eur J Nucl Med 1989: 15: 157–61.
  • Takalo H, Mukkala V-M, Mikola H, et al. Synthesis of europium(III) chelates suitable for labeling of bioactive molecules. Bioconjug Chem 1994; 5: 278–82.
  • Hurskainen P. Nucleic acid hybridization. In: I Hemmila, T Stahlberg and P Mottram (eds) Bioanalytical Applications of Labelling Technologies. EG&G Wallac, Turku, Finland, 1984: 195–236.
  • Hurskainen P, Dahlen P, Ylikoski J, et al. Preparation of europium-labeled DNA probes and their properties. Nucleic Acids Res 1991; 19: 1057–61.
  • Dahlen P, Hurskainen P, Lovgren T, Hyypia T. Time-resolved fluorometry for the detection of viral DNA in clinical specimens. J Clin Microbiol 1988; 26: 2434–6.
  • Dahlen P, Carlson J, Liukkonen L, et al. Europium-labeled oligonucleotides to detect point mutations: Application to P1 Z a-antitrypsin deficiency. Bioconjugate Chem 1993; 39: 162631.
  • Sund C, Ylikoski J, Hurskainen P, et al. Construction of europium (Eu3+) labeled oligo DNA hybridization probes. Nucleosides Nucleotides 1988; 7: 655–9.
  • Dahlen P, Liukkonen L, Kwiatkowsky M, et al. Europium-labeled oligonucleotide hybridization probes: Preparation and properties. Bioconjugate Chem 1994; 5: 268–7.
  • Dahlen P, Iitia AJ, Mukkala V-M, et al. The use of europium (Eu3+) labeled primers in PCR amplification of specific target DNA. Mol Cell Probes 1991; 5: 143–9.
  • Blomberg K, Granberg C, Hemmila I, et al. Europium-labeled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods 1986; 86: 225–9.
  • Bohlen H, Manzke O, Engert A, et al. Differentiation of cytotoxicity using target cells labelled with europium and samarium by electroporation. J Immunol Methods 1994; 173: 55–62.
  • Papanastasiou-Diamandi A, Shankaran P, Khosravi MJ. Immunoassay of triiodothyronine in serum by time-resolved fluorometric measurement of europium-chelate complexes in solution. Clin Biochem 1992; 25: 255–61.
  • Kropf J, Quitte E, Gressner AM. Time-resolved immunofluorometric assays with measurement of a europium chelate in solution: Application for sensitive determination of fibronectin. Anal Biochem 1991; 197: 258–65.
  • Kropf J, Botel T, Gressner AM. Time-resolved immunoassay for cellbound antigens in the solid phase status using cultured cells. Fresenius J Anal Chem 1992; 343: 54–5.
  • Kropf J, Gressner AM. Two sensitive time-resolved fluoroimmunoassays for cellular fibronectin. Clin Chem 1995; 41: 1283–7.
  • Yuan J, Matsumoto K. Synthesis of a new tetradentate fl-diketonate-europium chelate that can be covalently bound to proteins in time-resolved fluorometry. Anal Sci 1996; 12: 695–9.
  • Yuan J, Matsumoto K. Synthesis of a new tetradentate P-diketonate-europium chelate and its application for time-resolved fluorimetry of albumin. J Pharm Biomed Anal 1997; 15: 1397403.
  • Yuan J, Wang G, Kimura H, et al. Highly sensitive time-resolved fluoroimmunoassay of human immunoglobulin E by using a new europium chelate as a label. Anal Biochem 1997; 254: 283–7.
  • Yuan J, Matsumoto K, Kimura H. A new tetradentate P-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassays. Anal Chem 1998; 70: 596–601.
  • Yuan J, Wang G, Kimura H, et al. Sensitive time-resolved fluoroimmunoassay of human thyroid-stimulting hormone by using a new europium fluorescent chelate as a label. Anal Sci 1998; 14: 421–3.
  • Mitrunen K, Pettersson K, Piironen T, et al. Dual-label one-step immunoassay simultaneous measurements of free and total prostate-specific anitgen concentratins and ratios in serum. Clin Chem 1997; 41: 115–20.
  • Ylikoski A, Hellman J, Matikainen T, et al. A dual-label immunofluorometric assay for human osteocalcin. J Bone Miner Res 1998; 13: 1183–90.
  • Oser A, Valet G. Nonradioactive assay of DNA hybridization by template-mediated formation of a ternary Tb(III) complex in pure liquid phase. Angew Chem Int Ed Engl 1990; 29: 1167–69.
  • Sammes PG, Yahioglu G, Yearwood GD. Synergistic effects on europium luminescence in aqueous media. J Chem Soc Chem Commun 1992; 1282–3.
  • Coates J, Sammes PG, Yahioglu G, et al. A new homogeneous identification method for DNA. J Chem Soc Chem Commun 1994; 2311–2.
  • Lee YC, Kawasaki N, Lee RT, Suzuki N. Quantum-dye labeled proteins for glycobiology: a viable nonradioactive alternative tracer. Glycobiology 1998; 8; 849–56.
  • Adeyiga AM, Harlow PM, Vallarino LM, Leif RC. Advances in the development of lanthanide macrocyclic complexes as luminescent biomarkers. Proc SPIE. 1996; 2678: 1–9.
  • Bromm AJ, Leif RC, Quagliano JR, et al. The addition of a second lanthanide ion to increase the luminescence of europium(III) macrocyclic complexes. Proc SPIE 1999; 3604: 263–72.
  • Takalo H, Hanninen E, Kankare J. Luminescence of europium(III) chelates with 4-(arylethynyl)pyridines as ligands. Helv Chim Acta 1993; 76: 877–83.
  • Mikola H, Takalo H, Hemmila I. Synthesis and properties of luminescent lanthanide chelate labels and labeled haptenic antigens for homogeneous immunoassays. Bioconjugate Chem 1995; 6: 235–41.
  • Hemmilla I, Malminen O, Mikola H, et al. Homogeneos time-resolved floroimmunoassay of thyroxin in serum. Clin Chem 1988; 34: 2320–2.
  • Ahola T, Hemmila I, Raunio R, AJ Diament, and NS Loghin-Grosso, A time-resolved fluorometric method for the measurement of biotinidase activity. In: BJ Schmidt et al. (eds) Current Trends in Infant Screening. Elsevier Science Publisher, Amsterdam 1989; pp. 2659.
  • Toner JL. Lanthanide chelates as luminescent probes. In J Atwood (Ed.). Inclusion Phenomena and Molecular Recognition. Plenum Press, New York 1990; 185–97.
  • Rodriguez-Ubis JC, Sedano R, Barroso G, et al, Lanthanide complexes of polyacid ligands derived from 2,6-Bis(pyrazol-1-yl)pyridine, pyrazine, and 6,6'-Bis(pyrazol-1-yl)-2,2'-bipyridine: Synthesisand luminescence properties. Helv Chim Acta 1997; 80; 86–96.
  • Rodriguez-Ubis JC, Alonso MT, Brunet E. Synthesis and luminescence properties of europium(III) and terbium(III) complexes of aminopolycarboxylic acids ligands containing 3-aroylcoumarin. Tetrahedron Lett 1994; 35: 8461–4.
  • Mukkala V-M, Kankare J. New fluorescent Eu(III) and Tb(III) chelates of 2,2'-bipyridine derivatives. Eur J Solid State Inorg Chem 1992; 29: 53–6.
  • Kessler MA. Probing the dissociation state of acid-base indicators by time-resolved lanthanide luminescence: A convenient transduction scheme for optical chemical sensors. Anal Chem 1999; 71: 1540–3.
  • Mukkala V-M, Helenius M, Hemmila, I et al. Development of luminescent europium(III) and terbium(III) chelates of 2,2':6'2''-terpyridine derivatives for protein labeling. Helv Chim Acta 1993; 76: 1361–78.
  • Mukkala V-M, Takalo H, Liitti P, et al. Synthesis and luminescent properties of some Eu(III) and Tb(III) chelate labels having 2,2':6',2''-terpyridine as an energy absorbing part. J Alloys Compounds 1995; 225: 507–10.
  • DeHaas RR, Verwoerd NP, van der Corput MPC, et al. The use of peroxidase-mediated deposition of biotin-tyramine in combination with time-resolved fluorescence imaging of a europium chelate label in immunohistochemistry and in situ hybridization. J Histochem Cytochem 1996; 44: 1091–9.
  • Bjartell A, Laine S, Pettersson K, et al. Time-resolved fluorescence in immunocytochemical detection of prostate-specific antigen in prostatic tissue sections. Histochem J 1999; 31: 4552.
  • Hakala H, Virta P, Salo H, et al. Simultaneous detection of several oligonucleotides by time-resolved fluorometry: the use of a mixture of catogorized microparticles in a sandwich type mixed-phase hybridization assay. Nucleic Acids Res 1998; 26: 5581–88.
  • Hakala H, Heinonen P, Iitia A, et al. Covalent immobilization of oligonucleotides to microparticles. Quantitation of hybridization by time-resolved fluorescence detection on a single particle. Collect Czech Commun 1996; 61: S107–9.
  • Cooper ME, Sammes PG. Synthesis and spectral properties of a new luminescent europium(III) terpyridyl chelate. J Chem Soc Perkin Trans 2000; 2: 1695–700.
  • Takalo H, Mukkala V-M, Merio L, et al. Development of luminescent terbium(III) chelates for protein labelling: Effect of triplet-state energy level. Helv Chim Acta 1997; 80: 372–87.
  • Saha AK, Kross K, Kloszewski ED, et al. Time-resolved fluorescence of a new europium chelate complex: Demonstration of highly sensitive detection of protein and DNA samples. J Am Chem Soc 1993; 115: 11032–3.
  • Blomberg K, Hautala R, Lovgren J, et al. Time-resolved fluorometric assay for natural killer activity using targets labelled with a fluorescence enhancing ligand. J Immunol Methods 1996; 193: 199–206.
  • Yuan J, Wang G, Majima K, Matsumoto K. Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Anal Chem 2001; 73: 1869–76.
  • Remuian MJ, Roman H, Alonso MT, Rodriguez-Ubis JC. Synthesis and luminiscence properties of europium(III) and terbium(III) complexes with polyacid chelates from 2,6-bis(N- pyrazolyl)pyridine. J Chem Soc Perkin Trans 1993; 2: 1099–102.
  • Bailey MP, Rocks BF, Riley C. Terbium chelates for fluorescence immunoassays. Analyst 1985; 110: 603–4.
  • Canfi A, Bailey MP, Rocks BF. Multiple labelling of immunoglobulin G, albumin and testosterone with a fluorescent terbium chelate for fluorescence immunoassays. Analyst 1989; 114: 1407–11.
  • Shi HH, Yang YS. Synthesis, characterization and luminescent properties of EuIn and TbnI fluorescent chelates used as label in medical immunoassays. J Alloys Compounds 1994; 207/ 208: 29–32.
  • Phimphivong S, Saavedra SS. Terbium chelate membrane label for time-resolved, total internal reflection fluorescence microscopy of substrate-adherent cells. Bioconjugate Chem 1998; 9: 350–7.
  • Oser A, Roth WK, Valet G. Sensitive non-radioactive dot-plot hybridization using DNA probes labeled with chelate group substituted psoralen and quantitative detection by europium ion fluorescence. Nucleic Acids Res 1988; 16: 1181–96.
  • Oser A, Collasius M, Valet G. Multiple end labeling of oligonucleotides with terbium chelate-substituted psoralen for time-resolved fluorescence detection. Anal Biochem 1990; 191: 295301.
  • Labarbe R, Mignon S, Flock S, Houssier C. Diffusion-enhanced resonance energy transfer shows that linker-DNA accessibility decreases during salt-induced chromatin condensation. J Fluorescence, 1996; 6: 107–18.
  • Morone MM. Development of X-ray excitable luminescent probes for scanning X-ray microscopy. Ultramicroscopy 1999; 77: 23–36.
  • Ando T, Yamamoto T, Kobayashi N, et al. Synthesis of a highly luminescent terbium chelate and its application to actin. Biochim Biophys Acta 1992; 1102: 186–94.
  • Xu J, Root DD, Domain motion between the regulatory light chain and the nucleotide site in skeletal myosin. J Struct Biol 1998; 123: 150–61.
  • Li M, Selvin PR. Luminescent polyaminopolycarboxylate chelates of terbium and europium: The effect of chelate structure. J Am Chem Soc 1995; 117: 8132–8.
  • Chen J, Selvin PR. Thiol-reactive luminescent chelates of terbium and europium. Bioconjugate Chem 1999; 10: 311–5.
  • Li M, Selvin PR. Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: Attachment to DNA and energy transfer measurements. Bioconjugate Chem 1997; 8: 127–32.
  • Heyduk E, Heyduk T. Thiol-reactive, luminescent europium chelates: Luminescence probes for resonance energy transfer distance measurements in biomolecules. Anal Biochem 1997; 248: 216–27.
  • Heyduk E, Heyduk T. Probing the structure of macromolecules using microsecond time-resolved fluorescence of europium chelates. Proc SPIE 1989 3256: 218–22.
  • Selvin PR, Rana TM, Hearst JE. Luminescence resonance energy transfer. J Am Chem Soc 1994; 116: 6029–30.
  • Vereb G, Jares-Erijman E, Selvin EP, Jovin TM. Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys J 1998;74:2210–22.
  • Savitsky AP, Chydinov AV, Krilova SM. Novel fluorescent chelate for Eu. Proc SPIE 1995; 2388: 429–34.
  • De Cola L, Smailes DL, Vallarino LM. Inorg Chem 11986; 25; 1729-.
  • Sabbatini N, Perathoner S, Balzani V, et al. Antenna effect in Eu3+ and Tb3+ cryptates. In: V Balzanin (ed.) Supramolecular Photochemistry, Reidel Publishing Co. 1987, pp. 187–206.
  • Saito K, Lee RT, Lee YC. Quantification of Eu3+ in quantum-dye-labeled materials by ashing and dissociation enhancement. Anal Biochem 1998; 258: 311–4.
  • Leif RC, Vallarino LM. Rare-earth chelates as fluorescent markers in cell separation and analysis. In: Cell Separation Science and Technology. DS Kompala and P Todd (eds.) ACS Symposium Series, 1991; 464: 42–58.
  • Gansow OA, Kausar AR, Triplett KM, et al. Synthesis and chemical properties of lanthanide cryptates. J Am Chem Soc 1977; 99: 7087–9.
  • Lehn J.M. Cryptates: Macropolycyclic inclusion complexes. Pure Appl Chem 1977; 49: 85770.
  • Sabbatini N, Dellonte S, Ciano M, Bonazzi A, Balzani V. Spectroscopic and photophysical properties of the europium (III) cryptates [Eu3+ c2.2.1]. Chem Phys Lett 1984; 107: 212–6.
  • Sabbatini N, Guardigli M, Mecati A, et al. Encapsulation of lanthanide ions in calixarene receptors. A study by luminescent terbium3+ compex. J Chem Soc Chem Commun 1990; 8789.
  • Alpha B, Ballardini R, Balzani V, Lehn J-M., Perathoner S, Sabbatini N. Antenna effect in luminescent lanthanide cryptates: A photophysical study. Photochem Photobiol 1990; 52: 299–306.
  • Blasse G, Dirksen GJ, van der Voort D, et al. [Eucbpy bpy bpy]3+ cryptate: luminescence and conformation. Chem Phys Lett 1988; 146: 347–51.
  • Alpha B, Lehn JM, Mathis J. Energy transfer luminescence of europium(III) and terbium(III) cryptates as macrobicyclic polypyridine ligands. Angew Chem Int Ed Engl 1987; 26: 266–7.
  • Alpha B, Balzani V, Lehn JM, et al. Luminescent probes: the Eu- and Tb-cryptates of polypyridine macrocyclic ligands. Angew Chem Int Ed Engl 1987; 26: 1266–7.
  • Sabbatini N, Guardigli M, Lehn JM, Mathis G. Luminescence of lanthanide cryptate: Effect of phosphate and iodide. J Alloys Compounds 1992; 180: 363–7.
  • Sabbatini N, Guardigli M, Bolletta F, Manet I, Ziessel R. Luminescent Eu3+ and Tb3 + complexes of a branched macrocyclic ligand incorporating 2,2'-bipyridine in the macrocycle and phosphinate esters in the side arms. Angew Chem Int Ed Engl 1994; 33: 1501–3.
  • Scherrmann JM. La fluorescence a temps retarde en immuno-analyse. Le Biologiste 1987; 21: 481–6.
  • Prat O, Lopez E, Mathis G. Europium(III) cryptate: A fluorescent label for the detection of DNA hybrids on solid support. Anal Biochem 1991; 195: 283–9.
  • Prat O, Lopez E, Mathis G. Detection of europium cryptates by time-resolved fluorescence. In LJ Kricka (ed.) Nonisotopic Probing, Blotting, and Sequencing. Academic Press, Second Edition, San Diego CA, 1995, 307–29.
  • Lopez E, Chypre C, Alpha B, Mathis G. Europium (III) trisbipyridine cryptate label for time-resolved fluorescence detection of polymerase chain reaction products fixed on a solid support. Clin Chem 1993; 39: 196–201.
  • Sabbatini N, Guardigli M, Lehn J-M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 1993; 123: 201–28.
  • Ungaro R, Pochini A. Calixarene-based cation receptors and carriers. In: J. Vicens and J V Bohmer (eds). Calixarenes: a versatile class of macrocyclic compounds. Kluwer Academic Publisher, Dordrecht, The Netherlands, p 129-147 (1990).
  • Sabbatini N, Guardigli M, Manet I, et al. Synthesis and luminescence of lanthanide complexes of a branched macrocyclic ligand containing 2,2'-bipyridine and 9-methyl-1,10-phenanthroline subunits. Inorg Chem 1994; 33: 955–9.
  • Lowe MP, Caravan SJ, Rettig SJ. Tightening the hydrophobic belt: Effect of backbone and donor group variation on podand ligand complexes of the lanthanides. Inorg Chem 1998; 37: 1637–47.
  • Ulrich G, Hissler R, Ziessel I, et al. Synthesis of novel podands bearing bipyridine or bipyridine-N,N'-dioxide chromophores and luminescence of their Eu3+ and Tb3+ complexes. New J Chem 1997; 21: 147–50.
  • Bardwell DA, Jeffery JC, Jones PL, et al. Lanthanide complexes of the tetradentate N-donor ligand dihydrobis[3-(pyridyl)pyrazolyl]borate and the tetradentate N-donor ligand 2,6-bis(1H-pyrazol-3-yl)pyridine: syntheses, crystal structures and solution structures based on luminescence lifetime studies. J Chem Soc Dalton Trans 1997; 2079–86.
  • Horiguchi D, Katayama Y, Sasamoto K, et al. A new ligand for europium(III) that forms a stable fluorescent complex in aqueous solution. Chem Pharm Bull. 1992; 40: 3334–7.
  • CharbonniEre L, Ziessel R, Guardigli M, et al. Lanthanide tags for time-resolved luminescence microscopy displaying improved stability and optical properites. J Am Chem Soc 2001; 123: 2436–7.
  • Steemers FJ, Verboom W, Reinhoudt DN, van der Tol EB, Verhoeven JW. New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J Am Chem Soc 1995; 117: 9408–14.
  • Charbonniere L, Humbert T, Marsura A. Heptakis-6-(5-methylene-ureido-5'-methyl-2,2'-bipyridinyl)-cyclomaltoheptaose as a new fluorescent lanthanide polydentate ligand. Tetrahedron Lett 1999; 40: 4047–50.
  • Rudkevich DM, Verboom W, van der Tol E, et al. Calix[4]arene-triacids as receptors for lanthanides: synthesis and luminescence of neutral Eu3+ and Tb3+ complexes. J Chem Soc Perkin Trans 1995; 2: 131–4.
  • Piguet C, Bernardelli G, Hopfgartner G. Helicates as versatile supramolecular complexes. Chem Rev 1997; 97: 2005–62.
  • Rodriguez-Ubis JC, Alonso MT, Juanes O, et al. The discovery of a simple ligand based on acetophenone bearing excellent quantum yields for the excitation of Eu3+ and Tb3+. J Luminescenc 1998; 79: 121–5.
  • Takalo H, Hemmila I, Sutela T, et al. Synthesis and luminescence of novel EuIII complexing agents and labels with 4-(phenylethynyl)pyridine subunits. Helv Chim Acta 1996; 79: 789802.
  • Bush CE, Di Michele LJ, Peterson WR, et al. Solid-phase time-resolved fluorescence detection of human immunodeficiency virus polymerase chain reaction amplification products. Anal Biochem 1992; 202: 146–51.
  • Bush CE, van den Brink KM, Sherman DG, et al. Detection of Escherichia coli rRNA using target amplification and time-resolved fluorescence detection. Mol Cell Probes 1991; 5: 46772.
  • Lamture JB, Iverson B, Hogan ME. An intensely luminescent polymeric lanthanide chelator for multiple fluorescence labeling of biomolecules. Tetrahedron Lett 1996; 37: 6483–6.
  • Leif RC, Thomas RA, Yopp TA, et al. Development of instrumentation and fluorochromes for automated multiparameter analysis of cells. Clin Chem 1977; 23: 1492–8.
  • Yang XD, Ci Y-X, Chang W-B. Time-resolved fluorescence immunoassay with measurement of an europium chelate in solution; Dissociation conditions and applicatons for determination of cortisol. Anal Chem 1994; 66: 2590–4.
  • Ci YX, Yang XD. Labeling of protein with a new europium chelate of 5-chlorosulfonyl-2-thenoyltrifluoroacetone(CTTA) and application to immunoassay. Chin Chem Lett 1992; 3: 1007–10.
  • Yoshikawa K, Yuan J, Matsumoto K, et al. Time-resolved fluorometric detection of DNA using a tetradentate P-diketonate europium chelate as a label. Anal Sci 1999; 15: 121–4.
  • Kimura H, Yuan J, Wang G, et al. Highly sensitive quantitation of methamphetamine by time-resolved fluoroimmunoassay using a new europium chelate as a label. J Anal Toxicol 1999; 23: 11–6.
  • Kimura H, Mukaida M, Wang G, Yuan J, Matsumoto K. Dual-label time-resolved fluoroimmunoassay of psychopharmaceuticals and stimulants in serum. Forensic Sci Int 2000; 113: 345–51.
  • Savitsky AP, Chydinov AV, Krilova SM. Novel fluorescent chelate for Eu. Proc SPIE 2388: 429–34 (1995).
  • Chan MA, Bellem AC, Diamandis EP. Time-resolved immunofluorometric assay of alpha-fetoprotein in serum and amniotic fluid with a novel detection system. Clin Chem 1987; 33: 2000–3.
  • Evangelista RA, Pollak A, Allore B, et al. A new europium chelate for protein labelling and time resolved fluorometric applications. Clin Biochem 1988; 21: 173–8.
  • Morton RV, Diamandis EP. Streptavidin-based macro-molecular complex labeled with a europium chelator suitable for time-resolved fluorescence immunoassay applications. Anal Chem 1990; 62: 1841–5.
  • Diamandis EP, Morton RC, Reichstein E, et al. Multiple-fluorescence labeling with europium chelators. Applications to time-resolved fluoroimmunoassays. Anal Chem 1989; 61: 48–53.
  • Diamandis EP, Christopoulos TK. Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays. Anal Chem 1990; 62: 1149A-57A.
  • Reichstein E, Shami Y, Ramjeesingh M, et al. Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label. Anal Chem 1988; 60: 1069–74.
  • Diamandis EP. Multiple labeling and time-resolvable fluorophores. Clin Chem 1991; 37: 1486–91.
  • Scorilas A, Diamandis EP. Polyvinylamine-streptavidin complexes labeled with a europium chelator: A universal detection reagent for solid-phase time resolved fluorometric applications. Clin Biochem 2000; 33: 345–50.
  • Chan A, Diamandis EP, Krajden M. Quantification of polymerase chain reaction product in agarose gels with a fluorescent europium chelate as label and time-resolved fluorescence spectroscopy. Anal Chem 1993; 65: 158–63.
  • Diamandis EP, Christopoulos TK, Bean CC. Quantitative Western blot analysis and spot immunodetection using time-resolved fluorometry. J Immunol Methods 1992; 147: 251–9.
  • Marriott G, Heidecker M, Diamandis EP, Yan-Marriott Y. Time-resolved delayed luminescence imaging microscopy using europium ion chelate complex. Biophys J 1994; 67: 957–65.
  • Wilmott NJ, Miller JM, Tyson JF. Potential use of a terbium-transferrin complex as a label in an immunoassay for gentamicin. Analyst 1984; 109: 343–5.
  • Clark ID, MacManus JP, Banville D, Szabo AG. A study of sensitized lanthanide luminescence in an engineered calcium-binding protein. Anal Biochem 1993; 210: 1–6.
  • Clark ID, Brown CM, Sikorska-Walker M, et al. Self-association of Ca2+-binding peptides induced by lanthanide ions: A fluorescence study. Anal Biochem 1993; 213: 296–302.
  • Clark ID, Hill I, Sikoska-Walker M, et al. A novel peptide designed for sensitization of terbium(III) luminescence. FEBS Lett 1993; 333: 96–8.
  • Clark ID, MacManus JP, Szabo AG. A protease assay using time-resolved lanthanide luminescence from an engineered calcium binding protein substrate. Clin Biochem 1995; 28: 131–5.
  • MacKenzie CR, Clark ID, Evans SV, et al. Bifunctional fusion proteins consisting of a single-chain antibody and an engineered lanthanide-binding protein. Immunotechnology 1995; 1: 139–50.
  • MacManus JP, Hogue CW, Marsden BJ, et al. Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. J Biol Chem 1990; 265: 10358–66.
  • Hogue CWW, MacManus JP, Banville D, Szabo AG. Comparison of terbium(III) luminescence enhancement in mutants of EF hand calcium bindng proteins. J Biol Chem 1992; 267: 13340–7.
  • Bruno J, Horrocks WD, Zauhar RJ. Europium (III) luminescence and tyrosine to terbium (III) energy-transfer studies of invertebrate (octohus) calmodulin. Biochemistry 1992; 31: 701626.
  • Cronce DT, Horrocks WD. Jr. Probing the metal-bindingsites of cod parvalbumin using europium (III) ion luminescence and diffusion-enhanced energy transfer. Biochemistry 1992; 31: 7963–9.
  • Burroughs SE, Horrocks WD, Ren K, et al. Characterization of the lanthanide ion-binding properties of calcineurin B using laser-induced luminescence spectroscopy. Biochemistry 1994; 33: 10428–36.
  • Bunzli JCG, Pfefferle JM. Bovine a-lactalbumin — identification of 2 metal-ion-binding sites using the europium (III) luminescent probe. Helv Chim Acta 1994; 77: 323–3.
  • Gudgin Dickson EF, Pollak A, Diamandis EP. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J Photochem Photobiol 1995; 27: 3–19.
  • Gudgin Dickson EF, Wong HE, Pollak A. Detection of alkaline phosphatase by time-resolved fluorescence. In LJ Kricka (ed.) Nonisotopic Probing, Blotting, and Sequencing. Academic Press, 2nd ed., San Diego, CA, 1995, 113–29.
  • Diamandis EP, Christopoulos TK. Detection of lanthanide chelates and multiple labeling strategies based on time-resolved fluorescence. In LJ Kricka (ed.) Nonisotopic Probing, Blotting, and Sequencing. Academic Press, 2nd ed., San Diego CA, 1995, 377–90.
  • Templeton EF, Wong HE, Evangelista RA, et al. Time-resolved fluorescence detection of enzyme-amplified lanthanide luminescence for nucleic acid hybridization assays. Clin Chem 1991; 37: 1506–12.
  • Diamandis EP. Europium and terbium chelators as candidate substrates for enzyme-labelled time-resolved fluorimetric immunoassays. Analyst 1992; 117: 1879–84.
  • Zheng X-Y, Lu J-Z, Zhu Q-Z, et al. Study of a lanthanide fluorescence system with a coupled reaction based on hemin catalysis. Analyst 1997; 122: 455–8.
  • Meyer J, Karst U. Peroxidase enhanced lanthanide luminescence-a new technique for the evaluation of bioassays. Analyst 2000; 125: 1537–8.
  • Ioannou PC, Christopoulos TK. Two-round enzymatic amplification combined with time-resolved fluorometry of Tb3+ chelates for enhanced sensitivity in DNA hybridization assay. Anal Chem 1998; 70: 698–702.
  • Qin Q-P, Lovgren T, Pettersson K. Development of highly fluorescent detection reagent for the construction of ultrasensitive immunoassays. Anal Chem 2001; 73: 1521–9.
  • Orellana A, Laukkanen M-L, Keinanen K. Europium chelate-loaded liposomes: a tool for the study of binding and integrity of liposomes. Biochim Biophys Acta 1996; 1284: 29–34.
  • Okabayashi Y, Ikeuchi I. Liposome immunoassay by employing long-lived fluorescence detection. Analyst 1998; 123: 1329–32.
  • Roy BC, Peterson R, Mallik S, Campiglia AD. Synthesis and fluorescence properties of new fluorescent, polymerizable, metal-chelating lipids. J Org Chem 2000; 65: 3644–51.
  • Harma H, Soukka T, Lovgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem 2001; 47: 561–8.
  • Vaisanen V, Harma J, Lilja H, Bjartell A. Time-resolved fluorescence imaging for quantitative histochemistry using lanthanide chelates in nanoparticles and conjugated to monoclonal antibodies. Luminescence 2000; 15: 389–97.
  • Fowler A, Harvey M, Cox A, et al. Imaging proximity assays. The Leadseaker homogeneous imaging system. Genet Eng 1998; 18: 34.
  • Ullman EF, Kirakossian H, Singh S, et al. Luminescent oxygen channeling immunoassay: Measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci USA 1994; 91: 5426–30.
  • Beverloo HB, van Schadewijk A, van Gelderen-Boele S, Tanke H. Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy. Cytometry 1990; 11: 784–92.
  • Beverloo HB, van Schadewijk A, Bonnet J, et al. Preparation and microscopic visualization of multicolor luminescent immunophosphors. Cytometry 1992; 13: 561–70.
  • Beverloo HB, van Schadewijk A, Zijlmans HJMAA, Tanke HJ. Immunochemical detection of proteins and nucleic acids on filters using small luminescent inorganic crystals as markers. Anal Biochem 1992; 203: 326–34.
  • Beverloo HB. Detection of phosphors by phosphorescence. In LJ Kricka (ed.) Nonisotopic Probing, Blotting, and Sequencing. Academic Press, 2nd ed., San Diego, CA, 1995, 285–306.
  • Lakowicz JR, Gryczynski I, Gryczynski Z, et al. Luminescence spectral properties of CdS nanoparticles. J Phys Chem B 1999; 103: 7613–20.
  • Alivisatos AP. Semiconductor clusters, nanocrystals and quantum dots. Science 1996; 271: 933–7.
  • Bawendi MG, Steigerwald ML, Brus LE. The quantum mechanism of larger semicondutor clusters (“quantum dots”). Annu Rev Phys Chem 1990; 41: 477–96.
  • Correa-Duarte MA, Giersig M, Liz-Marzan LM. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem Phys Lett 1998; 286: 497–501.
  • Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdS nanocrystals. J Phys Chem 1996; 100: 468–71.
  • Sookal K, Hanus LH, Ploehn HJ, et al. A blue-emitting CdS/dendrimer nanocomposite. Adv Materials 1998; 10: 1083–7.
  • Wright WH, Mufti NA, Tagg NT, et al. High-sensitivity immunoassay using a novel upconverted phosphor reporter. Proc SPIE 1997; 2985: 248–55.
  • Wollenberger LV, Yao Y-M, Mufti N, et al. Detection of DNA using upconverting phosphor reporter probes. Proc SPIE 1997; 2985: 100–11.
  • Hampl J, Hall M, Mufti NA, et al. Upconverting phosphor reporters in immunochromatographic assays. Anal Biochem 2001; 288: 176–87.
  • van der Rijke F, Zijmans H, Li S, et al. Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotech 2001; 19: 273–6.
  • Richardson FS. Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 1982; 82: 541–52.
  • Martin RB, Richardson FS. Lanthanides as probes for calcium in biological systems Quart Rev Biophys 1979; 12: 181–209.
  • Copeland RA. Reverse fluorescence staining of proteins in polyacrylamide gels using terbium chloride. Anal Biochem 1994; 220: 218–9.
  • Gentile F, Crescenzi E, Pellegrini C. et al. Probing the interaction of thyroglobulin with metal ions by terbium(III) luminescence spectroscopy. Mol Cell Endocrinol 1998; 141: 21–7.
  • Hill JE, Hogue CWV, Clark ID, et al. Detection of calcium binding proteins on polyacryla-mide gels using time-resolved lanthanide luminescence photography. Anal Biochem 1994; 216: 439–43.
  • Georges J. Lanthanide-sensitized luminescence and applications to the determination of organic analytes. Analyst 1993; 118: 1481–6.
  • Beltyukova SV, Egorova AV. Terbium chelates for fluorescence immunoassays. J Pharm Biomed Anal 1998; 18: 267–70.
  • Lianidou ES, Levesque MA, Katsaros D, et al. Immunofluorometric assay of p53 protein versus sequencing of p53 exons 5 to 9 for the detection of p53 abnormalities in ovarian carcinoma. Anticancer Res 1999; 19: 749–56.
  • Ioannou PC, Rusakova NV, Andrikopoulou DA, et al. Spectrofluorometric determination of anthranilic acid derivatives based on terbium sensitized fluorescence. Analyst 1998; 123: 2839–43.
  • Files LA, Hirschy L, Winefordner JD. Evaluation of lanthanide-sensitized luminescence spectrometry for the measurement of tetracyclines in serum. J Pharm Biomed Anal 1985; 3: 95–100.
  • Hirschy LM, Dose EV, Winefordner JD. Lanthanide-sensitized luminescence for the detection of tetracyclines. Anal Chim Acta 1983; 147: 311–6.
  • Egorova A, Beltyukova S. Sensitization of europium luminescence in complexes with thiaprophenic acid. J Fluorescence 1999; 9: 245–9.
  • Fu PK-L, Turro C. Energy transfer from nucleic acids to Tb(III): Selective emission enhancement by single DNA mismatches. J Am Chem Soc 1999; 121: 1–7.
  • Zhu R, Kok WT. Determination of catecholamines and related compounds by capillary electrophoresis with postcolumn terbium complexation and sensitized luminescence detection. Anal Chem 1997; 69: 4010–6.
  • Dickeson SK, Bhattacharyya-Pakrasi M, Mathis NL, et al. Ligand binding results in divalent cation displacement from the alpha 2 beta 1 integrin I domain: evidence from terbium luminescence spectroscopy. Biochemistry 1998; 37: 11280–8.
  • Rieutord A, Prognon P, Brion F, et al. Liquid chromatographic determination using lanthanide as time-resolved luminescence probes for drugs and xenobiotics: Advantages and limitations. Analyst 1997; 122: 59R-66R.
  • Schreurs M, Hellendoorn L, Gooijer C, et al. Time-resolved luminescence detection of derivatized thiols in column liquid chromatography. J Chromatogr 1991; 552: 62534.
  • Iwata T, Senda M, Korosu Y, et al. Construction of time-resolved fluorescence detector for amino compounds after high-performance liquid chromatography using europium chelate. Anal Chem 1997; 69: 1861–5.
  • Kurosu Y, Iwata T, Tsuji A, et al. Indirect time-resolved fluorescence detection of both non-fluorescent and fluorescent compounds separated by high-performance liquid chromatogra-phy. J Chromatogr 1997; 787: 261–5.
  • Vazquez BI, Fente C, Franco C, et al. Simultaneous high-performance liquid chromatographic determination of ochratoxin A and citrinin in cheese by time-resolved luminescence using terbium. J Chromatogr 1996; 727: 185–93.
  • Canada R, Paltoo DN. Binding of terbium and cisplatin to C13* human ovarian cancer cells using time-resolved terbium luminescence. Biochim Biophys Acta 1998; 1448: 85–98.
  • Mack KM, Canada RG, Andrews PA. The effects of terbium on the cellular accumulation of cisplatin in MDA-MB-231 human breast tumor cells. Cancer Chemother Pharmacol 1997; 39: 217–22.
  • Scaff WLJr, Dyer DL, Mori K. Fluorescent europium chelate stain. JBacteriol 1969; 98: 2468.
  • Anderson JR, Westmoreland D. Counts of soil organism using a fluorescent brightener and a europium chelate. Soil Biol Biochem 1971; 3: 85–7.
  • Johnen BG. Phizosphere microorganisms and roots stained with europium chelate and fluorescent brightener. Soil Biol Biochem 1978; 10: 495–502.
  • Rosen DL, Sharpless C, McGown LB. Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Anal Chem 1997: 69: 1082–5.
  • Zohar O, Ikeda M, Shinagawa H, et al. Thermal imaging of receptor-activated heat production in single cells. Biophys J 1998; 74; 82–9.
  • Bornhop DJ, Hubbard DS, Houlne MP, et al. Fluorescent tissue site-selective lanthanide chelate, Tb.PCTMB for enhanced imaging of cancer. Anal Chem 1999; 71: 2607–15.
  • Houlne MP, Agent TS, Kiefer GE, et al. Spectroscopic characterization and tissue imaging using site-selective polyazacyclic terbium(III) chelates. Appl Spectrosc 1996; 50: 1221–8.
  • Ci Y-X, Li Y-Z, Liu X-J. Selective determination of DNA by its enhancement effect on the fluorescence of the Eu3+-tetracycline complex. Anal Chem 1995; 67: 1785–8.
  • Yao FJ, Li PH, Yang XD, et al. A quenching fluorescence immunoassay method for determination of trace albumin using unlabelled terbium chelate. Chin Chem Lett 1991; 2: 737–8.
  • Hubbard DS, Houlne MP, Kiefer G, et al. Diagnostic imaging using rare-earth chelates. Lasers Med Sci 1998; 13: 14–21
  • Hubbard DS, Houlne MP, Kiefer GE, et al. Endoscopic fluorescence imaging of tissue selective lanthanide chelates. Bioimaging 1998; 6: 63–70.
  • Lemieux GA, Yarema KJ, Jacobs CL, et al. Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents. J Am Chem Soc 1999; 121: 4278–9.
  • Elster AD, Jackels SC, Allen NS, et al. Europium-DTPA: a gadolinium analogue traceable by fluorescence microscopy. Am J Neuroradiol 1989; 10: 1137–44.
  • Jenkins AL, Uy OM, Murray GM. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent soman in water. Anal Chem 1999; 71: 373–8.
  • Lim MJ, Patton WF, Lopez MF, et al. A luminescent europium complex for the sensitive detection of proteins and nucleic acids immobilized on membrane support. Anal Biochem 1997; 245: 184–95.
  • Steinberg TH, Haugland RP, Singer VL. Applications of SYPRO Orange and SYPRO Red protein gel stains. Anal Biochem 1996; 239: 238–45.
  • Roza-Fernandez M, Valencia-Gonzales MJ, Diaz-Garcia ME. Room-temperature phosphorescent palladium-porphine probe for DNA determination. Anal. Chem. 69: 2406–10 (1997).
  • He Y, McGown LB. DNA sequencing by capillary electrophoresis with four-decay fluorescence detection. Anal Chem 2000; 72: 5865–73.
  • Hemmila I, Holttinen S, Pettersson K, et al. Double-label time-resolved immunofluorometry of lutropin and follitropin in serum. Clin Chem 1987; 33: 2281–3.
  • Saarma M, Jarvek”lg L, Hemmila I, et al. Simultaneous quantification of two plant viruses by double-label time-resolved immunofluorometric assay. J Virol Methods 1989; 23: 47–54.
  • Siitari H. Dual-label time-resolved fluoroimmunoassay for the simultaneous detection of adenovirus and rotavirus in faeces. J Virol Methods 1990; 28: 179–88.
  • Hemmila I. Time-resolved fluorometric determination of terbium in aqueous solution. Anal Chem 1985; 57: 1676–81.
  • Pettersson K, Alfthan H, Stenman U-H, et al. Simultaneous assay of a-fetoprotein and the free P subunit of human chorionic gonadotropin by dual-label time-resolved immunofluorometric assay. Clin Chem 1993; 39: 2084–9.
  • Ito K, Oda M, Tsuji A, et al. Simultaneous determination of alpha-fetoprotein, human chorionic gonadotropin and estriol in serum of pregnant women by time-resolved fluoroimmunoassay. J Pharm Biomed Anal 1999; 20: 169–78.
  • Leinonen J, Lovgren T, Vornanen T, et al. Double-label time-resolved immunofluorometric assay of prostate-specific antigen and its complex with aj-antichymotrypsin. Clin Chem 1993; 39: 2098–103.
  • Vuori J, Rasi S, Takala T, et al. Dual-label time-resolved fluoroimmunoassay for simultaneous detection of myoglobin and carbonic anhydrase III in serum. Clin Chem 1991; 37: 2087–92.
  • Iitia A, Liukkonen L, Siitari H. Simultaneous detection of two cystic fibrosis alleles using dual-label time-resolved fluorometry. Mol Cell Probes 1992; 6: 505–12.
  • Iitia A, Mikol M, Gregersen N, et al. Detection of a point mutation using short oligonucleotide probes in allele-specific hybridization. BioTechniques 1994; 17: 566–73.
  • Hansen TS, Petersen NE, Iitia A, et al. Robust nonradioactive oligonucleotide ligation assay to detect a common point mutation in the CYP2D6 gene causing abnormal drug metabolism. Clin Chem 1995; 41: 413–8.
  • Bathum L, Hansen TS, Horder M, Brosen K. A dual label oligonucleotide ligation assay for detection of the CYP2C19*1, CYP2C19*2, and CYP2C19*3 alleles involving time-resolved fluorometry. Ther Drug Monit 1998; 20: 1–6.
  • Sjoroos M, Iitia A, Ilonen J, et al. Triple-label hybridization assay for type-I diabetes-related HLA alleles. BioTechniques 1995; 18: 870–6.
  • Sjoroos M, Ilonen J, Reijonen H, Lovgren T. Time-resolved fluorometry based sandwich hybridization assay for HLA-DQA1 typing. Dis Markers 1998; 14; 9–19.
  • Halminen M, Sjoroos M, Makela MJ, et al. Simultaneous detection of IFNy and IL-4 mRNAs using RT-PCR and time-resolved fluorometry. Cytokine 1999; 11: 87–93.
  • Samiotaki M, Kwiatkowski M, Ylitalo N, Landegren U. Seven-color time-resolved fluorescence hybridization analysis of human papilloma virus types. Anal Biochem 1997; 253: 15661.
  • Blomberg K. Simultaneous measurement of natural killer cell cytotoxicity against each of three different target cell lines. J Immunol Methods 1994; 168: 267–73.
  • Harma H, Tarkkinen P, Soukka T, Lovgren T. Miniature single-particle immunoassay for prostate-specific antigen in serum using recombinant Fab fragments. Clin Chem 2000; 46: 1755–61.
  • Ekins R, Chu F, Biggart E. Fluorescence spectroscopy and its application to a new generation of high sensitivity, multi-spot, multianalyte microimmunoassay. Clin Chim Acta 1990; 194: 91–114.
  • Kakabakos SE, Christopoulos TK and Diamandis EP. Multianalyte immunoassay based on spatially distinct fluorescent areas quantified by laser-excited solid-phase time-resolved fluorometry. Clin Chem 1992; 38: 338–42.
  • Lovgren T, Heinonen P, Lehtinen P, et al. Sensitive bioaffinity assays on individual microparticles using time-resolved fluorometry. Clin Chem 1997; 43: 1937–43.
  • Pope AJ, Haupts UM, Moore KJ. Homogeneous fluorescence readouts for miniaturized high-throughput screening: theory and practice. Drug Discovery Today 1999; 4: 350–62.
  • Kolb AJ. Assay miniaturization in drug discovery. Drug Discovery Dev 1999; 69–73.
  • Sittampalam GS, Kahl SD, Janzen WP. High-throughput screening: advantages in assay technologies. Curr Opin Chem Biol 1997; 1: 384–91.
  • Bright FV, McGown LB. Homogeneous immunoassay of phenobarbital by phase resolved fluorescence spectroscopy. Talanta 1985; 32: 15–8.
  • Barnard G, Kohen F, Mikola H, et al. Measurement of estrone-3-glucuronide in urine by rapid, homogeneous time-resolved fluoroimmunoassay. Clin Chem 1989; 35: 555–9.
  • Nurmi J, Ylikoski A, Soukka T, Lovgren T. A new label technology for the detection of specific polymerase chain reaction products in a closed tube. Nucleic Acids Res 2000; 28: i-vi.
  • Schobel U, Egelhaaf H-J, Frohlich A, et al. Mechanisms of fluorescence quenching in donor-acceptor labeled antibody-antigen conjugates. J Fluorescence 2000; 10: 147–54.
  • Bastiaens PIH, Squire A. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol 1999; 9: 48–52.
  • Harpur AG, Wouters FS, Bastiaens PIH. Imaging FRET between spectrally similar GFP molecules in single cells. Nature Biotech 2001; 19: 167–9.
  • Verveer PJ, Wouters FS, Reynolds AR, Bastiaens PIH. Quantitative imaging of lateral ErB1 receptor signal propagation in the plasma membrane. Science 2000; 290: 1567–70.
  • Tolosa L, Szmacinski H, Rao G, et al. Lifetime-based sensing of glucose using energy transfer with a long lifetime donor. Anal Biochem 1997; 250: 102–8.
  • Li L, Gryczynski I, Lakowicz JR. Resonance energy transfer study using a rhenium metal-ligand lipid conjugate as the donor in a model membrane. Chem Phys Lipids 1999; 101: 24353.
  • Turconi S, Bingham RP, Haupts U, Pope AJ. Developments in fluorescence lifetime-based analysis for ultra-HTS. Drug Discovery Today 2001; 6 (Suppl.): S27-S39.
  • Helms MK, French T. Time-resolved fluorescence measurements of actin phalloidin interactions. Proc SPIE 2000; 3926: 158–65.
  • Getz EB, Cooke R, Selvin PR. Luminescence resonance energy transfer measurements in myosin. Biophys J 1998; 74: 2451–8.
  • Selvin P. Fluorescence resonance energy transfer. Methods Enzymol 1995; 246: 300–34.
  • Kolb A, Burke JW, Mathis G. Homogeneous time-resolved fluorescence method for drug discovery. In JP Devlin (ed.) High Throughput Screening: The discovery of bioactive substances. Marcel Dekker Inc, New York 1997; 345–60.
  • Mathis G. Homogeneous immunoassay and other applications of a novel fluorescent energy transfer technology using rare earth cryptates. J Clin Ligand Assay 1997; 20: 141–7.
  • Mathis G, Socquet F, Viguier M, et al. Homogeneous immunoassays using rare earth cryptates and time resolved fluorescence: Principles and specific advantages for tumor markers. Anti-cancer Res 1997; 17: 3011–4.
  • Zuber E, Rosso L, Darbouret B, et al. A descriptive model for the kinetics of a homogeneous fluorometric immunoassay. J Immunoassay 1997; 18: 21–47.
  • Park Y-W, Cummings RT, Wu L, et al. Homogeneous proximity tyrosine kinase assays: Scintillation proximity assay versus homogeneous time-resolved fluorescence. Anal Biochem 1999; 269: 94–104.
  • Ohmi N, Wingfield JM, Yazawa H, Inagaki O. Development of a homogeneous time-resolved fluorescence assay for high throughput screening to identify Lck inhibitors: Comparison with scintillation proximity assay and streptavidin-coated plate assay. J Biomol Screening 2000; 5: 463–70.
  • Kane S, Fleener CA, Zhang YS, et al. Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence. Anal Biochem 2000; 278: 29–38.
  • Mellor GW, Burden MN, Preaudat M, et al. Development of a CD28/CD86 (B7-2) binding assay for high throughput screening by homogeneous time-resolved fluorescence. J Biomol Screening 1998; 3: 91–9.
  • Hemmila I, Webb S. Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications. Drug Discovery Technol 1997; 9: 373–81.
  • Hemmila I. LANCE: Homogeneous assay platform for HTS. J Biomol Screening 2000; 4: 303–7.
  • Blomberg K, Hurskainen P, Hemmila I. Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the P subunit of human chorionic gonadotropin in serum. Clin Chem 1999; 45: 855–61.
  • Stenroos K, Hurskainen P, Eriksson S, et al. Homogeneous time-resolved IL-2 IL-2Ra assay using fluorescence resonance energy transfer. Cytokine 1998; 10: 495–9.
  • Moore KJ, Turconi S, Miles-Williams A, et al. A homogeneous 384-well high throughput screen for novel tumor necrosis factor receptor: Ligand interactions using time resolved energy transfer. J Biomol Screening 1999; 4: 205–14.
  • He Y. Assay development for high-throughput screening: Practical considerations in drug discovery. In: W Hori and LM Savage (eds.) High-Throughput Screening. Novel Assay Design, Rapid Target Development and Accelerated Level Optimization. IBC Library Series, Southborough, 1997; 115–28.
  • Jones SG, Lee DY, Wright JF, et al. Improvements in the sensitivity of time resolved fluorescence energy transfer assays. J Fluorescence 2001; 11: 13–21.
  • Sueda S, Yuan J, Matsumoto K. Homogeneous DNA hybridization assay by using europium luminescence energy transfer. Bioconjugate Chem 2000; 11: 827–31.
  • Karvinen J, Hurskainen P, Liitti P, et al. Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3. BioTech Int 1999; 11: 12
  • Ortmans I, Content S, Boutonnet N, et al. Ru-labeled oligonucleotides for photoinduced reactions on targeted DNA guanines. Chem Eur J 1999; 5: 2712–21.
  • Bright FV. Multifrequency phase fluorescence study of hapten-antibody complexation. Anal Chem 1989; 61: 309–13.
  • Visser NV, Hink MA, van Hoek A, et al. Comparison between fluorescence correlation spectroscopy and time-resolved fluorescence anisotropy as illustrated with a fluorescent dextran conjugate. J Fluorescence 1999; 9: 251–5.
  • Kanaoka Y, Takahashi T, Machida M, et al. N-(3-Fluoranthyl)maleimide (FAM): A medium lifetime fluorescent thiol reagent. Chem Pharm Bull 1976; 24: 1419–21.
  • Philpott CJ, Rahman NA, Kenny N, et al. Rotational dynamics of luteinizing hormone receptors and MHC Class I antigens on murine Leydig cells. Biochim Biophys Acta 1995; 1235. 62–8.
  • Lakowicz JR, Gratton E, Cherek H, et al. Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry. J Biol Chem 1984;259:10967–72.
  • Terpetschnig E, Szmacinski H, Malak H, Lakowicz JR. Metal-ligand complexes as a new class of long-lived fluorochromes for protein hydrodynamics. Biophys J 1995; 68: 342–50.
  • Meskers SCJ, Riehl JP, Dekkers HPJM. Linearly polarized luminescence spectra of Eu(2,6-pyridine-dicarboxylate)3 in hydroxylic solution. Chem Phys Lett 1993; 216: 241–6.
  • Mullins ST, Sammes PG, West RM, et al. Preparation of some new intercalating europium(III) sensitizers. J Chem Soc Perkin Trans 1995; 1: 75–81.
  • Ius A, Bacigalupo MA, Meroni G. A homogeneous time-resolved fluoroimmunoassay for haptens utilizing liposomes. Anal Biochem 1996; 238; 208–11.
  • Christopoulos TK, Diamandis EP. Fluorescence immunoassays, In: EP Diamandis and TK Christopoulos (eds) Immunoassay, Academic Press, San Diego CA, 309-36 (1996).
  • Diamandis EP. Analytical methodology for immunoassays and DNA hybridization assays — Current status and selected systems — Critical Review. Clin Chim Acta 1990; 194: 19–50.
  • Madersbacher S, Shu-Chen T, Schwarz S, et al. Time-resolved immunofluorometry and other frequently used immunoassay types for follicle-stimulating hormone compared by using identical monoclonal antibodies. Clin Chem 1993; 39: 1435–9.
  • Christopoulos TK, Lianidou ES, Diamandis EP. Ultrasensitive time-resolved fluorescence method for alfa-fetoprotein. Clin Chem 1990; 36: 1497–502.
  • Kaihola H-L, Irjala K, Viikari J, et al. Determination of thyrotropin in serum by time-resolved fluoroimmunoassay evaluated. Clin Chem 1985; 31: 1706–10.
  • Papanastasiou-Diamandi A, Christopoulos TK, Diamandis EP. Ultrasensitive thyrotropin immunoassay based on enzymatically amplified time-resolved fluorescence with a terbium chelate. Clin Chem 1992; 38: 545–8.
  • Ogata A, Tagoh H, Lee T, et al. A new highly sensitive immunoassay for cytokines by dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA). J Immunol Methods 1992; 148: 15–22.
  • Turpeinen U, Stenman UH. Determination of human tumour nectosis factor-a (TNF-a) by time-resolved immunofluorometric assay. Scand J Clin Lab Invest 1994; 54: 475–83.
  • Petrovas C, Daskas SM, Lianidou ES. Determination of tumor necrosis factor-a (TNF-a) in serum by a highly sensitive enzyme amplified lanthanide luminescence immunoassay. Clin Biochem 1999; 32: 241–7.
  • Piironen T, Lovgren J, Karp M, et al. Immunofluorometric assay for sensitive and specific measurement of human prostatic glandular kallikrein (hK2) in serum. Clin Chem 1996; 42: 1034–41.
  • Christensson A, Bjork T, Nilsson O, et al. Serum prostate specific antigen complexed to a1-antichymotrypsin as an indicator of prostate cancer. J Urol 1993; 150: 100–5.
  • Saedi MS, Hill TM, Kuus-Reichel K, et al. The precursor form of the human kallikrein 2, a kallikrein homologous to prostate-specific antigen, is present in human sera and is increased in prostate cancer and benign prostatic hyperplasia. Clin Chem 1998; 44: 2115–9.
  • Yu H, Diamandis EP. Ultrasensitive time-resolved immuonofluorometric assay of prostate-specific antigen in serum and preliminary clinical studies. Clin Chem 1993; 39: 210814.
  • Yu H, Diamandis EP, Sutherland DJA. Immunoreactive prostate specific antigen levels on female and male breast tumours and its association with steroid hormone receptors and patient age. Clin Biochem 1994; 27: 75–9.
  • Yu H, Diamandis EP. Prostate-specific antigen in milk of lactating women. Clin Chem 1995; 41: 54–8.
  • Black MH, Grass CL, Leinonen J, et al. Characterization of monoclonal antibodies for prostate-specific antigen and development of highly sensitive free prostate-specific antigen assays. Clin Chem 1999; 45: 347–54.
  • Diamandis EP, Yu H, Sutherland DJA. Detection of prostate specific antigen immunoreactiv-ity in breast tumor. Breast Cancer Res Treat 1994; 32: 291–300.
  • Ferguson RA, Yu H, Klayvas M, et al. Ultrasensitive detection of prostate-specific antigen by a time-resolved immunoflurometric assay and the Immulite immunochemiluminescent third generation assays: potential applications in prostate and breast cancer. Clin Chem 1996; 42: 675–84.
  • Magklara A, Scorilas A, Lopez-Otm C, et al. Human glandular kallikrein in breast milk, amniotic fluid, and breast cyst fluid. Clin Chem 1999; 45: 1774–80.
  • Angelopoulou K, Diamandis EP. Detection of the TP53 tumour suppressor gene product and p53 auto-antibodies in the ascites of women with ovarian cancer. Eur J Cancer 1997; 33: 11521.
  • Hassapoglidou S, Diamandis EP. Antibodies to the p53 tumor suppressor gene product quantified in cancer patent serum with a time-resolved immunofluorometric technique. Clin Biochem 1992; 25: 445–9.
  • Levesque MA, D'Costa M, Spratt E, et al. Quantitative analysis of p53 protein in non-small cell lung cancer and its prognostic value. Int J Cancer 1998; 79: 494–501.
  • Levesque MA, Diamandis EP, Yu H, Sutherland DJA. Quantitative analysis of mutant p53 protein in breast tumor cytosols and study of its association with other biochemical prognostic indicators in breast cancer, Breast Cancer Res Treat 1994; 30: 179–95.
  • Schneckenburger H, Konig K, Kunzi-Rapp K, et al. Time-resolved in vivo fluorescence of photosensitizing porphyrins. J Photochem Photobiol B 1993; 21: 143–7.
  • Schneckenburger H, Gschwend MH, Sailer R, et al. Time-gated fluorescence microscopy in cellular and molecular biology. Cell Mol Biol 1998; 44: 795–805.
  • Vo-Dinh T, Nolan T, Cheng YF, et al. Phase-resolved fiber-optics fluoroimmunosensor. Appl Spectrosc 1990; 44: 128–32.
  • Degan P, Montagnoli G, Wild CP. Time-resolved fluoroimmunoassay of aflatoxins. Clin Chem 1989; 35: 2308–10.
  • Reimer GJ, Gee SJ, Hammock BD. Comparison of a time-resolved fluorescence immunoassay and enzyme-linked immunosorbent assay for the analysis of atrazine in water. J Agric Food Chem 1998; 46: 3353–8.
  • Elliot CT, Francis KS, Shott HD, et al. Determinaton of the concentrations of the steroids estradiol, progesterone and testosterone in bovine sera: comparison of commercial dissociation enhanced lanthanide fluorescence immunoassay kits with conventional radio and enzyme immunoassays. Analyst 1995; 120: 1827–30.
  • Crooks SRH, Fodey TL, Gilmore GR, Elliott CT. Rapid screening for monensin residues in poultry plasma by a dry reagent dissociation enhanced lanthanide fluoroimmunoassay. Analyst 1998; 123: 2493–6.
  • Safar J, Wille H, Itri V, et al., Eight prion strains have PrPSc molecules with different conformations. Nature Med 1998; 4: 1157–65.
  • MacGregor I, Hope J, Barnard G, et al. Application of a time-resolved floroimmunoassay for the analysis of normal prion protein in human blood and its components. Vox Sanguinis 1999; 77: 88–96.
  • Tuomola M, Harpio R, Knuutila P, et al. Time-resolved fluoroimmunoassay for the measurement of androsterone in porcine serum and fat samples. J Agric Food Chem 1997; 45: 352934.
  • Adlercreutz H, Wang GJ, Lapcik O, et al. Time-resolved fluoroimmunoassay for plasma enterolactone. Anal Biochem 1998; 265: 208–15.
  • Bacigalupo MA, Ius A, Meroni G, et al. Time resolved fluorimmunoassay of abscisic acid in potato leaves. Analyst 1998; 123: 731–3.
  • Bacigalupo MA, Ius A, Meroni G, et al. Determination of aflatoxin B1 in agricultural commodities by time-resolved fluoroimmunoassay and immunoenzymometric assay. Analyst 1994; 119: 2813–5.
  • Bacigalupo MAA, Ius A, Meroni G, et al. Time-resolved fluoroimmunoassay for A9-tetrahy-drocannabinol as applied to early discrimination of Cannabis sativa plants. J Agric Food Chem 1999; 47: 2743–5.
  • Krarup HB, Drewes AM, Madsen PH. A quantitative HCV-PCR test for routine diagnostics. Scand J Clin Lab Invest 1998; 58: 415–22.
  • Lovgren T, Iitia A, Hurskainen P, Dahlen P. Detection of lanthanide chelates by time-resolved fluorescence. In LJ Kricka (ed.) Nonisotopic Probing, Blotting, and Sequencing. Academic Press, Second Edition, San Diego CA, 1995, 331–76.
  • Lonnrot M, Sjoroos M, Salminen K, et al. Diagnosis of enterovirus and rhinovirus infections by RT-PCR and time-resolved fluorometry with lanthanide chelate labeled probes. J Med Virol 1999; 59: 378–84.
  • Halonen P, Rocha E, Hierholzer J, et al. Detection of enteroviruses and rhinoviruses in clinical specimens by PCR and liquid-phase hybridization. J Clin Microbiol 1995; 33: 648–53.
  • Iitia A, Mikola N, Gregersen N, et al. Detection of a point mutation using short oligonucleotide probes in allele-specific hybridization. BioTechniques 1994; 17: 566–73.
  • Seddon HR, Gray G, Politt RJ, et al. Population screening for the common G985 mutation causing medium-chain acyl-CoA dehydrogenase deficiency with Eu-labeled oligonucleotides and the DELFIA system. Clin Chem 1997; 43: 436–42.
  • Eggertsen G, Eriksson M, Wiklund O, et al. Time-resolved fluorometry in the genetic diagnosis of familiar defective apolipoprotein B-100. J Lipid Res 1994; 35: 1505–8.
  • Nilsson C, Jiang M, Pettersson K, et al. Determination of a common genetic variant of luteinizing hormone using DNA hybridization and immunoassay. Clin Endocrinol 1998; 49: 369–76.
  • Ylikoski A, Sjoroos M, Lundwall, et al. Quantitative reverse transcription-PCR assay with an internal standard for the detection of prostate-specific antigen mRNA. Clin Chem 1999; 45: 1397–407.
  • Bortolin S, Christopoulos TK. Time-resolved immunofluorometric determination of specific mRNA sequences amplified by the polymerase chain reaction. Anal Chem 1994; 66: 4302–7.
  • Bortolin S, Christopoulos TK. Detection of BCR-ABL transcripts from the Philadelphia translocation by hybridization in microtiter wells and time-resolved immunofluorometry. Clin Chem 1995; 41: 693–9.
  • Bortolin S, Christopoulos TK. Quantitative RT-PCR combined with time-resolved fluorometry for determination of BCR-ABL mRNA. Clin Chem 1996; 42: 1924–9.
  • Radovich P, Bortolin S, Christopoulos TK. Time-resolved fluorometric hybridization assays with RNA probes synthesized from polymerase chain reaction-generated DNA templates. Anal Chem 1995; 67: 2644–9.
  • Galvan B, Christopoulos TK. Quantitative reverse transcriptase-polymerase chain reaction for prostate-specific antigen mRNA. Clin Biochem 1997; 5: 391–7.
  • Verhaegen M, Ioannou PC, Christopoulos TK. Quantification of prostate-specific antigen mRNA by coamplification with a recombinant RNA internal standard and microtiter well-based hybridization. Clin Chem 1998; 44; 1170–6.
  • Parkhurst KM, Parkhurst LJ. Donor-acceptor distance distributions in a double-labeled fluorescent oligonucleotide both as a single strand and in dublexes. Biochemistry 1995; 34: 293300.
  • Nurmi J, Ylikoski A, Soukka T, Karp M, and Lovgren T. A new label technology for the detectio of specific polymerase chain reaction products in a closed tube. Nucleic Acids Res 2000; 28; i-vi.
  • Fugger L, Liang J, Gautam A, et al. Quantitative analysis of peptides from myelin basic protein binding to the MHC Class II protein, I-Au, which confers susceptibility to experimental allergic encephalomyelitis. Mol Med 1996; 2: 181–8.
  • Sherman MA, Runnels HA, Moore JC, et al. Membrane interactions influence the peptide binding behavior of DR1. J Exp Med 1994; 179: 229–34.
  • Sloan VS, Cameron P, Porter G, et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature 1995; 375: 802–6.
  • Tompkins SM, Rota PA, Moore JC, et al. A europium fluoroimmunoassay for measuring binding of antigen to class II MNC glycoproteins. J Immunol Methods 1993; 163: 209–16.
  • Weber DA, Evavold BD, Jensen PE. Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM. Science 1996; 274: 618–20.
  • Takeuchi T, Yoshikda M, Kabasawa Y, et al. Time-resolved fluorescence receptor assay for benzodiazepine. Anal Lett 1993; 26: 1535–45.
  • Takeuchi T, Nishikawa T, Matsukawa R, et al. Nonisotopic receptor assay for benzodiazepine drugs using time-resolved fluorometry. Anal Chem 1995; 67: 2655–8.
  • Gu YJ, Oeveren W, Boonstra PW, et al. Leukocyte activation with increased expression of CR3 receptors during cardiopulmonary bypass. Ann Thorac Surg 1992; 53: 839–43.
  • Zuck P, Lao Z, Skwish S, et al. Ligand-receptor binding measured by laser-scanning imaging. Proc Natl Acad Sci USA 1999; 96: 11122–7.
  • Ivaska J, Kapyla J, Pentikainen O, et al. A peptide inhibiting the collagen binding function of integrin a2I domain. J Biol Chem 1999; 274: 3513–21.
  • Stenroos K, Hurskainen P, Blomberg K, et al. Solid phase IL-2-IL-2Ra assay with time resolved fluorometry. Immunol Lett 1997; 58: 15–28.
  • Inglese J, Samama P, Patel S, Burbaum J, Stroke IL, Appell KC. Chemokine receptor-ligand interactions measured using time-resolved fluorescence. Biochemistry 37; 2372–7 (1998).
  • Appell KC, Chung TDY, Solly KJ, et al. Biological characterization of neurokinin antagonist discovered through screening of a combinatorial library. J Biomol Screening 1998; 3: 19–27.
  • Grunberg J, Griffiths G, Howell KE. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol 1989; 108: 1301–16.
  • Liu J, Gallacher M, Horlick RA, et al. A time-resolved fluorometric assay for galanin receptors. J Biomol Screening 1998; 3: 199–206.
  • Rezniczek G, de Pereda JM, Reipert S, Wiche G. Linking integrin a6P4-based cell adhesion to the intermediate filament cytoskeleton: Direct interaction between the P4 subunit and plectin at multiple molecular sites. J Cell Biol 1998; 141: 209–25.
  • Okada Y, Yokono K, Katsuta A, et al. Development of an assay for bioactive insulin. Anal Biochem 1998; 257: 134–8.
  • Norris JD, Paige LA, Christensen DJ, et al. Peptide antagonists of the human estrogen receptor. Science 1999; 285: 744–6.
  • Paige LA, Christensen DJ, Gr0n H, et al. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER a and ER p. Proc Natl Acad Sci USA 1999; 96: 39994004.
  • Trinh L, Ziegler R, Watling D, et al. Development of an immunofluorometric assay, high-capacity, cell-based assay for the measurement of human type I and type II interferons. J Biomol Screening 1999; 4: 33–7
  • Zhou G, Cummings R, Li Y, et al. Nuclear receptors have distinct affinities for coactivators: Characterization by fluorescence resonance energy transfer. Mol Endocrinol 1998; 12: 1594604.
  • Kane S, Fleener CA, Zhang YS, Davis LJ. Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence. Anal Biochem 2000; 278: 29–38.
  • Wang X-S, Greilberger J, Jurgens G. Measuring cell binding and association of native and oxidized low-density lipoproteins to macrophages. Anal Biochem 1999; 267: 271–8.
  • Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: Natural ligands for an orphan nuclear receptor Science 1999; 284: 1365–68.
  • Makashima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362–5.
  • Stenroos K, Hurskainen P, Eriksson S, et al. Homogeneous time-resolved IL2-IL2Ra assay using fluorescence resonance energy transfer. Cytokine 1998; 10: 495–9.
  • McVey M, Ramsay D, Kellett E, et al. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. J Biol Chem 2001; 276: 14092–9.
  • Karp MT, Suominen AI, Hemmila I, et al. Time-resolved europium fluorescence in enzyme activity measurements: a sensitive protease assay. J Appl Biochem 1983; 5: 399–403.
  • Rabina J, Pikkarainen M, Miyasaka M, Renkonen R. A time-resolved immunofluorometric assay of sialyl Lewis x-degrading a2,3-sialidase activity. Anal Biochem 1998; 258: 362–8.
  • Braunwalder AF, Yarwood DR, Sills MA, Lipson KE. Measurement of the protein tyrosine kinase activity of c-src using time-resolved fluorometry of europium chelates. Anal Biochem 1996; 238: 159–64.
  • Kolb AJ, Kaplita PV, Hayes DJ, et al. Tyrosine kinase assays adapted to homogeneous time-resolved fluorescence. Drug Discovery Today 1998; 3: 333–42.
  • Gaarde WA, Hunter T, Brady H, et al. Development of nonradioactive, time-resolved fluorescence assay for the measurement of Jun N-terminal kinase activity. JBiomol Screening 1997; 2: 213–3.
  • Al-Obeidi FA, Wu JJ, Lam KS. Protein tyrosine kinases: Structure, substrate specificity, and drug discovery. Biopolymers 1998; 47: 197–223.
  • Ohmi N, Wingfield JM, Yazawa H, Imagaki O. Development of a homogeneous time-resolved fluorescence assay for high throughput screening to identify Lck inhibitors: comparison with scintillation proximity assay and streptavidin-ccoated plate assay. J Biomolec Screening 2000; 5: 463–70.
  • Biazzo-Ashnault DE, Park Y-W, Cummings RT, et al. Detection of insulin receptor tyrosine kinase activity using time-resolved fluorescence energy transfer technology. Anal Biochem 2001; 291: 155–8.
  • Verveer PJ, Wouters FS, Reynolds AR, Bastiaens PIH. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 2000; 290: 1567–70.
  • Galvan B, Christopoulos TK. Fluorometric and time-resolved immunofluorometric assays of protein-tyrosine phosphatase activity. Clin Biochem 1996; 29: 125–31.
  • Worm D, Handberg A, Hoppe E, et al. Decreased skeletal muscle phosphotyrosine phos-phatase (PTPase) activity towards insulin receptors in insulin-resistant Zucker rats measured by delayed europium fluorescence. Diabetologia 1996; 39: 142–8.
  • Cummings RT, McGovern HM, Zheng S, et al. Use of a phosphotyrosine-antibody pair as a general detection method in homogeneous time-resolved fluorescence: Application to human immunodeficiency viral protease. Anal Biochem 1999; 269: 79–93.
  • Alpha-Bazin B, Mathis G. New homogeneous reverse transcriptase and nuclease assays based on rare earth cryptate and fluorescent energy transfer. Nucleosides Nucleotides 1999; 18: 1277–8.
  • Earnshaw DI, Greenwood CJ, Ruediger M, et al. Homogeneous fluorescence assays for |lHTS: Nucleic acid replication proteins. 5th Annual Conference of The Society for Biomolecular Screening, Baltimore MD, 1998; SDAT-30.
  • Bare LA, Trinh L, Wu S, et al. Identification of a series of potent telomerase inhibitors using a time-resolved fluorescence based assay. Drug Dev Res 1998; 43: 109–16.
  • Condrau MA, Schwendener RA, Niederer P, et al. Time-resolved flow cytometry for the measurement of lanthanide chelate fluorescence: I Concept and theoretical evaluation. Cytometry 1994; 16: 187–94.
  • Condrau MA, Schwendener RA, Zimmermann M, et al. Time-resolved flow cytometry for the measurement of lanthanide chelate fluorescence. II Instrument and experimental set up. Cytometry 1994; 16: 195–205.
  • Deka C, Steinkamp JA. Time-resolved fluorescence-decay measurement and analysis on single cells by flow cytometry. Appl Optics 1996; 35: 4481–9.
  • Steinkamp JA, Crissman HA. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry. Cytometry 1993; 14: 210–6.
  • Pinsky BG, Ladasky JJ, Lakowicz JR, et al. Phase-resolved fluorescence lifetime measurements for flow cytometry. Cytometry 1993; 14: 123–35.
  • Lovgren J, Blomberg K. Simultaneous measurement of NK cell cytotoxicity against two target cell lines labelled with fluorescent lanthanide chelates. J Immunol Methods 1994; 173: 11925.
  • Neville ME, Richau KW, Boni LT, et al. A comparison of biodistribution of liposomal and soluble IL-2 by a new method based on time-resolved fluorometry of europium. Cytokine 2000; 12: 1702–11.
  • Kuusela P, Vartio T, Vuento M, et al. Time-resolved fluorimetry in the study of attachment of staphylococci and streptococci on substrate-bound fibronectin. FEMS Microbiol Lett 1986; 36: 57–62.
  • van der Kamp KWHJ, van Oeveren W. Contact, coagulation and platelet interaction with heparin treated equipment during heart surgery. Int J Artif Organs 1993; 16: 836–42.
  • Nikolic B, MacNulty E, Mir B, et al. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J Cell Biol 1996; 134: 1455–67.
  • Saarinen K, Kivisto K, Blomberg K, Punnonen K, Leino L. Time-resolved fluorometric assay for leukocyte adhesion using a fluorescence enhancing ligand. J Immunol Method 2000; 236: 19–26.
  • Christopoulos TK, Diamandis EP, Wilson G. Quantification of nucleic acids on nitrocellulose membranes with time-resolved fluorometry. Nucleic Acids Res 1991; 19: 6015–9.
  • van de Rijke F, Zijmans H, Li S, et al. Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotech 2001; 19: 273–6
  • Harvey EN, Chase AM. The phosphorescence microscope. Rev Sci Instrum 1942; 13: 365–8.
  • Morgan CG, Mitchell AC, Murray JC, Wall ET. New approaches to lifetime-resolved luminescence imaging. J Fluorescence 1997; 1: 65–73.
  • Dix JA, Verkman AS. Pyrene eximer mapping in cultured fibroblasts by ratio imaging and time-resolved microscopy. Biochemistry 1990; 29: 1949–53.
  • Tanke HJ, DeHaas RR, Sagner G, et al. Use of platinum coproporphyrin and delayed luminescence imaging to extend the number of targets in FISH karyotyping. Cytometry 1998; 33: 453–9.
  • Seveus L, Vaisala M, Hemmila I, et al. Use of fluorescent europium chelates as labels in microscopy allows glutaraldehyde fixation and permanent mounting and leads to reduced autofluorescence and good long-term stability. Microsc Res Techn 1994; 28: 149–54.
  • Soini E, Pelliniemi LJ, Hemmila I, et al. Lanthanide chelates as new fluorochrome labels for cytochemistry. J Histochem Cytochem 1988; 36: 1449–51.
  • Rulli M, Kuusisto A, Salo J et al. Time-resolved fluorescence imaging of islet cell autoantibody quantitation. J Immunol Methods 1997; 208: 169–79.
  • Vaisanen V, Harma H, Lilja H, Bjartell A. Time-resolved fluorescence imaging for quantitative histochemistry using lanthanide chelates in nanoparticles and conjugated to monoclonal antibodies. Luminescence 2000; 15: 389–97.
  • Phillips D. Luminescence lifetime in biological systems. Analyst 1994; 119: 543–50.
  • Kao HP, Abney JR, Johnson CK. Determinants of the translational mobility of a small solute in cell cytoplasm. J Cell Biol 1993; 120: 175–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.