1,583
Views
1
CrossRef citations to date
0
Altmetric
Original Research Article

Machine-learning prediction for hospital length of stay using a French medico-administrative database

, , , , , & show all
Article: 2149318 | Received 18 Feb 2022, Accepted 16 Nov 2022, Published online: 26 Nov 2022

References

  • Direction de la Recherche, des Études, de l’Évaluation et des Statistiques, “Les dépenses de santé en 2019 - Résultats des comptes de la santé - Édition 2020,” Vie publique.fr. cited 2022 Jan 11 Available from https://www.vie-publique.fr/rapport/276352-les-depenses-de-sante-en-2019-resultats-des-comptes-de-la-sante
  • Baumann A, Wyss K. The shift from inpatient care to outpatient care in Switzerland since 2017: policy processes and the role of evidence. Health Policy. 2021 Apr;125(4):512–11.
  • Exertier Les inadéquations hospitalières en France : fréquence, causes et impact économique , et al. In: Le panorama des établissements de santé (Paris: DREES) . 2011. 33–45.
  • Rojas‐García A, Turner S, Pizzo E, et al. Impact and experiences of delayed discharge: a mixed‐studies systematic review. Health Expect. 2018 Feb;21(1):41–56.
  • Marfil-Garza BA, et al. Risk factors associated with prolonged hospital length-of-stay: 18-year retrospective study of hospitalizations in a tertiary healthcare center in Mexico. PLoS One. 2018;13(11):e0207203.
  • Tefera GM, Feyisa BB, Umeta GT, et al. Predictors of prolonged length of hospital stay and in-hospital mortality among adult patients admitted at the surgical ward of Jimma University medical center, Ethiopia: prospective observational study. J Pharm Policy Pract. 2020Jun;13:24.
  • Acion L, Kelmansky D, van der Laan M, et al. Use of a machine learning framework to predict substance use disorder treatment success. PLOS ONE. 2017 Apr;12(4):e0175383.
  • Ahn JM, Kim S, Ahn K-S, et al. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLOS ONE. 2018 Nov;13(11):e0207982.
  • Chekroud AM, et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry. 2016 Mar;3(3):243–250.
  • Gholipour C, Rahim F, Fakhree A, et al. Using an artificial neural networks (ANNs) model for prediction of intensive care unit (ICU) Outcome and length of stay at hospital in traumatic patients. J Clin Diagn Res. 2015 Apr;9(4):OC19–OC23.
  • Kuhn M, Johnson K, Applied Predictive Modeling. New York: Springer-Verlag, 2013. cited 2018 Sep 05. [Online]. Available from: //www.springer.com/us/book/9781461468486
  • Ebinger J, et al. A machine learning algorithm predicts duration of hospitalization in COVID-19 patients. Intell Based Med. 2021Jan;5:100035.
  • Mekhaldi RN, Caulier P, Chaabane S, et al. Using machine learning models to predict the length of stay in a hospital setting. Trends and innovations in information systems and technologies. Cham; 2020. 202–211. 10.1007/978-3-030-45688-7_21.
  • Bacchi S, et al. Prediction of general medical admission length of stay with natural language processing and deep learning: a pilot study. Intern Emerg Med. 2020 Sep;15(6):989–995.
  • Fernández-Delgado M, Cernadas E, Barro S, et al. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014;15:3133–3181.
  • Boudemaghe T, Belhadj I. Data resource profile: the French national uniform hospital discharge data set database (PMSI). Int J Epidemiol. 2017 Apr;46(2): 392–392. DOI:10.1093/ije/dyw359.
  • Williams TA, Ho KM, Dobb GJ, et al. Effect of length of stay in intensive care unit on hospital and long-term mortality of critically ill adult patients. Br J Anaesth. 2010 Apr;104(4):459–464.
  • Hassan A, et al. Clinical outcomes in patients with prolonged intensive care unit length of stay after cardiac surgical procedures. Ann Thorac Surg. 2012 Feb;93(2):565–569.
  • Mahesh B, Choong CK, Goldsmith K, et al. Prolonged stay in intensive care unit is a powerful predictor of adverse outcomes after cardiac operations. Ann Thorac Surg. 2012 Jul;94(1):109–116.
  • Becker GJ, Strauch GO, Saranchak HJ. Outcome and cost of prolonged stay in the surgical intensive care unit. Arch Surg. 1984 Nov;119(11):1338–1342.
  • Laupland KB, Kirkpatrick AW, Kortbeek JB, et al. Long-term mortality outcome associated with prolonged admission to the ICU. Chest. 2006 Apr;129(4):954–959.
  • Zampieri FG, et al. Admission factors associated with prolonged (>14 days) intensive care unit stay. J Crit Care. 2014 Feb;29(1):60–65.
  • MacIntyre NR, Epstein SK, Carson S, et al. Management of patients requiring prolonged mechanical ventilation: report of a NAMDRC consensus conference. Chest. 2005 Dec;128(6):3937–3954.
  • White AC. Long-term mechanical ventilation: management strategies. Respir Care. 2012 Jun;57(6):889–899.
  • Blumenfeld YJ, El-Sayed YY, Lyell DJ, et al. Risk factors for prolonged postpartum length of stay following cesarean delivery. Am J Perinatol. 2015 Jul;32(9):825–832.
  • Tukey J. Exploratory Data Analysis. 1st ed. Reading Mass: Pearson; 1977.
  • Everitt BS, Skrondal A. The Cambridge dictionary of statistics. 4th ed. Cambridge UK  New York: Cambridge University Press; 2010.
  • Quan H, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005 Nov;43(11):1130–1139.
  • Hastie T, Tibshirani R, Friedman J, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, 2nd ed. New York: Springer-Verlag, 2009. cited 2018 Sep 06. [Online]. Available from: //www.springer.com/us/book/9780387848570
  • Breiman L, Friedman J, Stone CJ, et al. Classification and regression trees. Florida: CRC press; 1984.
  • Jaotombo F, et al. Machine-learning prediction of unplanned 30-day rehospitalization using the French hospital medico-administrative database. Medicine (Baltimore). 2020 Dec;99(49):e22361.
  • Breiman L. Random Forests. Mach Learn. 2001 Oct;45(1):5–32.
  • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001 Oct;29(5):1189–1232.
  • The handbook of brain theory and neural networks. Arbib MA, editor. Cambridge MA: A Bradford Book; 1995.
  • Goulet-Pelletier J-C, Cousineau D. A review of effect sizes and their confidence intervals, Part I: the Cohen’s d family. TQMP. 2018 Dec;14(4):242–265.
  • Wardhani NWS, Rochayani MY, Iriany A, et al., “Cross-validation metrics for evaluating classification performance on imbalanced data,” in 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Oct. 2019, pp. 14–18. doi: 10.1109/IC3INA48034.2019.8949568.
  • Huang J, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowledge Data Eng. 2005 Mar;17(3):299–310.
  • Kaur H, Pannu HS, Malhi AK. A systematic review on imbalanced data challenges in machine learning: applications and solutions. ACM Comput Surv. 2019 Aug;52(4):1–79.
  • Altmann A, Toloşi L, Sander O, et al. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010 May;26(10):1340–1347.
  • Van Rossum G, De Boer J. Interactively testing remote servers using the python programming language. CWI Q. 1991 Dec;4(4):283–303.
  • Pedregosa F, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–2830.
  • Chollet F, “Keras,” GitHub repository, 2015, [Online]. Available: https://github.com/fchollet/keras%7D%7D
  • Lequertier V, Wang T, Fondrevelle J, et al. Hospital length of stay prediction methods: a systematic review. Med Care. 2021 Oct;59(10):929–938.
  • Bacchi S, Tan Y, Oakden-Rayner L, et al. Machine learning in the prediction of medical inpatient length of stay. Intern Med J. 2020. DOI:10.1111/imj.14962
  • Rachda Naila M, Caulier P, Chaabane S, et al. A comparative study of machine learning models for predicting length of stay in hospitals. J Inf Sci. 2021 Sep;37:1025–1038.
  • Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11(70):2079–2107.
  • Bland JM, Altman DG. Statistics Notes: bootstrap resampling methods. BMJ. 2015Jun;350:h2622.
  • Brasel KJ, Lim HJ, Nirula R, et al. Length of stay: an appropriate quality measure? Arch Surg. 2007 May;142(5):461–466.
  • Lisk R, et al. Predictive model of length of stay in hospital among older patients. Aging Clin Exp Res. 2019 Jul;31(7):993–999.
  • Koskas P, Pons-Peyneau C, Romdhani M, et al. Hospital discharge decisions concerning older patients: understanding the underlying process. Canad J Aging/La Revue canadienne du vieillissement/La Revue canadienne du vieillissement. 2019 Mar;38(1):90–99.
  • Hendlmeier I, Bickel H, Heßler-Kaufmann JB, et al. Care challenges in older general hospital patients. Z Gerontol Geriat. 2019 Nov;52(4):212–221.
  • Talari K, Goyal M. Retrospective studies – utility and caveats. J R College Physicians Edinburgh. 2020 Dec;50(4):398–402.
  • Tofthagen C. Threats to validity in retrospective studies. J Adv Pract Oncol. 2012;3(3):181–183.
  • Chen T, Guestrin C, “XGBoost: a scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.
  • Ke Guolin, Meng, Qi, Finley, Thomas, Wang, Taifeng, Chen, Wei, Ma, Weidong, Ye, Qiwei, Liu, Tie-Yan LightGBM: A Highly Efficient Gradient Boosting Decision Tree Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2-4 December Long Beach, CA. In: . Vol. 30 Guyon, Isabelle, von Luxburg, Ulrike, Bengio, Samy, Wallach, Hanna M., Fergus, Rob, Vishwanathan, S. V. N., Garnett, Roman 3149–3157 . 2017. Available fromhttps://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
  • Prokhorenkova Liudmila, Gusev Gleb, Vorobev Aleksandr, Dorogush, Anna Veronika, Gulin, Andrey CatBoost: Unbiased Boosting with Categorical Features . Vol. 31 (NY: Curran Associates Inc.)6639–6649. 2018. NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing System 3-8 December 2018 Montréal, Canada. Available fromhttps://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
  • Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy. 2021 Jan;23(1, Art. no. 1):DOI:10.3390/e23010018
  • Lundberg SM, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020 Jan;2(1, Art. no. 1). DOI:10.1038/s42256-019-0138-9.
  • Erickson N, et al., “AutoGluon-tabular: robust and accurate AutoML for structured data.” arXiv, Mar. 13, 2020. doi: 10.48550/arXiv.2003.06505