1,113
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Hyperspectral imaging of weathered wood samples in transmission mode

ORCID Icon, , , , & ORCID Icon
Pages 9-13 | Received 01 Feb 2016, Accepted 31 Aug 2016, Published online: 13 Oct 2016

References

  • Agresti, G., Bonifazi, G., Calienno, L., Capobianco, G., Lo Monaco, A., Pelosi, C., Picchio, R. and Serranti, S. 2013. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy, and hyperspectral imaging. Journal of Spectroscopy. 2013, Article ID: 380536, 13. doi:10.1155/2013/380536.
  • Ablin, R. and Sulochana, C. H. 2013. A survey of hyperspectral image classification in remote sensing. International Journal of Advanced Research in Computer and Communication Engineering. 2(8): 2986–3000.
  • Burud, I., Gobakken, L. R., Flø, A., Kvaal, K. and Thiis, T. 2014. Hyperspectral imaging of blue stain fungi on coated and uncoated wooden surfaces. International Biodeterioration & Biodegradation. 88: 37–43. doi: 10.1016/j.ibiod.2013.12.002
  • Burud, I., Gobakken, L. R., Flø, A., Kvaal, K. and Thiis, T. 2015. Hyperspectral near infrared of wooden surfaces performed outdoors and indoors. NIR News. 26(1): 4–7. doi: 10.1255/nirn.1500
  • Burud, I., Smeland, K. A., Liland, K. H., Thiis, T. K., Sandak, J., Sandak, A. and Gobakken, L. R. 2016. Weather degradation of thin wood samples. IRG Annual Meeting, IRG/WP 16-20578, ISSN 2000-8953.
  • Havimo, M., Rikala, J., Sirviö, J. and Sipi, M. 2008. Distributions of tracheid cross-sectional dimensions in different parts of Norway spruce stems. Silva Fennica. 42(1): 89–99. doi: 10.14214/sf.266
  • Jelle, B. P., Ruther, P. and Hovde, P. J. 2012. Investigations of accelerated climate aged wood substrates by Fourier transform infrared material characterization. Advances in Materials Science and Engineering Impact Factor. 2012, Article ID: 827471, 6. doi:10.1155/2012/827471.
  • Kataoka, Y., Kiguchi, M., Fujiwara, T. and Evans, P. D. 2005. The effects of within-species and between-species variation in wood density on the photodegradation depth profiles of sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa). Journal of Wood Science. 51: 531–536. doi: 10.1007/s10086-004-0685-4
  • Mohebby, B. and Saei, A. M. 2016. Effects of geographical directions and climatological parameters on natural weathering of FIR wood. Construction and Building Materials. 94: 684–690. doi: 10.1016/j.conbuildmat.2015.07.049
  • Pandey, K. K. 2005. Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation and Stability. 90(1): 9–20. doi: 10.1016/j.polymdegradstab.2005.02.009
  • Rubel, F. and Kottek, M. 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift. 19: 135–141. doi: 10.1127/0941-2948/2010/0430
  • Sandak, J., Sandak, A., Pauliny, D., Riggio, M., Bonfà, S. and Meglioli, S. 2013. A multi sensor approach for prediction of weathering effects on exposed timber structures. Advanced Materials Research. 778: 794–801. doi: 10.4028/www.scientific.net/AMR.778.794
  • Sandak, J., Sandak, A. and Riggio, M. 2015. Characterization and monitoring of surface weathering on exposed timber structures with multi-sensor approach. International Journal of Architectural Heritage. 9(6): 674–688. doi: 10.1080/15583058.2015.1041190
  • Sandak, A., Sandak, J. and Riggio, M. 2016a. Assessment of wood structural members degradation by means of infrared spectroscopy: an overview. Structural Control and Health Monitoring. 13(3): 396–408. doi: 10.1002/stc.1777
  • Sandak, A., Sandak, J., Burud, I. and Gobakken, L. R. 2016b. Weathering kinetics of thin wood veneers assessed with NIR. Journal of Near Infrared Spectroscopy. doi:10.1255/jnirs.1230.
  • Sandberg, D. 2005. Weathering of radial and tangential wood surfaces of pine and spruce. Holzforschung. 53(4): 355–364.
  • Sandberg, D. and Söderström, O. 2006. Crack formation due to weathering of radial and tangential sections of pine and spruce. Wood Material Science and Engineering. 1(1): 12–20. doi: 10.1080/17480270600644407
  • Schwanninger, M., Rodrigues, J. and Fackler, K. 2011. A review of band assignment in near infrared spectra of wood and wood components. Journal of Near Infrared Spectroscopy. 19: 287–308. doi: 10.1255/jnirs.955
  • Tsuchikawa, S., Inoue, K. and Mitsui, K. 2003. Spectroscopic monitoring of wood characteristics variation by light-irradiation. Forest Products Journal. 54(11): 71–76.
  • Tolvay, L. and Faix, O. 1995. Artificial ageing of wood monitored by FTIR spectroscopy and CIE colour measurements. Holzforschung. 49: 397–404. doi: 10.1515/hfsg.1995.49.5.397
  • Wang, X. and Wacker, J. P. 2006. Using NIR spectroscopy to predict weathered wood exposure times, in Proceedings of 9th World Conference on Timber Engineering, 3, 2636–2639, Portland, OR, USA, Curran Associates, Inc.
  • Williams, R. S., Knaebe, M. T., Sotos, P. G. and Feist, W. C. 2001a. Erosion rates of wood during natural weathering. Part I: effects of grain angle and surface texture. Wood and Fiber Science. 33(1): 31–42.
  • Williams, R. S., Knaebe, M. T. and Feist, W. C. 2001b. Erosion rates of wood during natural weathering. Part II: earlywood and latewood erosion rates. Wood and Fiber Science. 33(1): 43–49.
  • Williams, R. S., Knaebe, M. T., Evans, J. W. and Feist, W. C. 2001c. Erosion rates of wood during natural weathering. Part III: effect of exposure angle on erosion rate. Wood and Fiber Science. 33(1): 50–57.
  • Williams, R. S. 2005. Weathering of wood. In: Rowell, R. M. (ed). Handbook of Wood Chemistry and Wood Composites. Boca Raton: CRC Press.
  • Yata, S. and Tamura, T. 1995. Histological changes of softwood surface during outdoor weathering (in Japanese). Mokuzai Gakkaishi. 41: 1035–1042.