190
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Incipient brown rot decay in modified wood: patterns of mass loss, structural integrity, moisture and acetyl content in high resolution

, , , &
Pages 172-182 | Received 01 Apr 2016, Accepted 31 May 2017, Published online: 05 Jul 2017

References

  • Alfredsen G, Pilgård A. 2014. Postia placenta decay of acetic anhydride modified wood – effect of leaching. Wood Mater Sci Eng. 9:162–169. doi: 10.1080/17480272.2014.887776
  • Alfredsen G, Ringman R, Pilgård A, Fossdal CG. 2014. New insight regarding mode of action of brown rot decay of modified wood based on DNA and gene expression studies. Int Wood Prod J. 6(1):2008–2013.
  • Arantes V, Jellison J, Goodell B. 2012. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol. 94:323–338. doi: 10.1007/s00253-012-3954-y
  • Aro N, Pakula T, Penttila M. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 29:719–739. doi: 10.1016/j.femsre.2004.11.006
  • Arquiza JMRA, Hunter J. 2014. The use of real-time PCR to study Penicillium chrysogenum growth kinetics on solid food at different water activities. Int J Food Microbiol. 187:50–56. doi: 10.1016/j.ijfoodmicro.2014.06.002
  • AWPA E10. 1991. American wood-preservers’ association standard E10-91. Standard method for testing wood preservatives by laboratory soil-block cultures.
  • Baranyi J, Roberts TA. 2000. Principles and application of predictive modeling of the effects of preservative factors on microorganisms. In: Lund BM, Baird-Parker TC, Gould GW, editors. The microbiological safety and quality of food. Gaithersburg (MD): Aspen Publishers; p. 342–358.
  • Bravery AF. 1979. A miniaturised wood-block test for the rapid evaluation of wood preservative fungicides. In: Screening techniques for potential wood preservative chemicals. Proceedings of a special seminar held in association with the 10th annual meeting of the IRG, Peebles 1978. Swedish Wood Preservation Institute Report No. 136. Stockholm.
  • Brischke C, Welzbacher CR, Huckfeldt T. 2008. Influence of fungal decay by different basidiomycetes on the structural integrity of Norway spruce wood. Holz Roh- Werkst. 66:433–438. doi: 10.1007/s00107-008-0257-1
  • Brischke C, Welzbacher CR, Rapp AO. 2006. Detection of fungal decay by high-energy multiple impact (HEMI) testing. Holzforschung. 60:217–222. doi: 10.1515/HF.2006.036
  • Brischke C, Zimmer K, Ulvcrona T, Bollmus S, Welzbacher CR, Thomsen O. 2012. The impact of various modification processes on the structural integrity of wood. Proceedings of the 6th European Conference on Wood Modification, Ljubliana, Slovenia.
  • Curling SF, Clausen CA, Winandy JE. 2002. Relationships between mechanical properties, weight loss and chemical composition of wood during incipient brown-rot decay. For Prod J. 52:34–39.
  • Eaton RA, Hale MDC. 1993. Decay, pests and protection. Cambridge: Chapman & Hall.
  • EN 84. 1996. Wood preservatives – accelerated ageing of treated wood prior to biological testing. Leaching procedure. European Committee for Standardization (CEN), Brussels, Belgium.
  • EN 113. 1996. Wood preservatives – test method for determining the protective effectiveness against wood destroying basidiomycetes: determination of toxic values. European Committee for Standardization (CEN), Brussels, Belgium. 31 p.
  • Esteves B, Nunes L, Pereira H. 2011. Properties of furfurylated wood (Pinus pinaster). Eur J Wood Wood Prod. 69:521–525. doi: 10.1007/s00107-010-0480-4
  • Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmén L. 2010. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme Microb Technol. 47:257–267. doi: 10.1016/j.enzmictec.2010.07.009
  • Fenton HJH. 1894. Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans. 65:899–910. doi: 10.1039/CT8946500899
  • Fuhr MJ, Schubert M, Schwarze FWMR, Herrmann HJ. 2011. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 115:919–932. doi: 10.1016/j.funbio.2011.06.017
  • Goldstein IS. 1960. Impregnating solutions and methods. GB Patent 846,680.
  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol. 53:133–162. doi: 10.1016/S0168-1656(97)01681-7
  • Hill C. 2006. Wood modification: chemical, thermal and other processes. Stevens C.V., editor. Chichester: John Wiley and Sons, Ltd.
  • Hill CAS. 2009. Why does acetylation protect wood from microbiological attack? Wood Mater Sci Eng. 4:37–45. doi: 10.1080/17480270903249409
  • Hill CAS, Forster SC, Farahani MRM, Hale MDC, Ormondroyd GA, Williams GR. 2005. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. Int Biodeter Biodegrad. 55:69–76. doi: 10.1016/j.ibiod.2004.07.003
  • Hill CAS, Papadopoulos AN, Payne D. 2004. Chemical modification employed as a means of probing the cell-wall micropore of pine sapwood. Wood Sci Technol. 37:475–488. doi: 10.1007/s00226-003-0193-5
  • ISO 5223. 1996. Test sieves for cereals. Geneva: International Organization for Standardization.
  • Lande S, Westin M, Schneider M. 2004. Properties of furfurylated wood. Scand J For Res. 19:22–30. doi: 10.1080/0282758041001915
  • Larsson Brelid P. 1998. Acetylation of solid wood – wood properties and process development [PhD thesis]. Göteborg, Sweden: Department of Forest products and Chemical Engineering, Chalmers University of Technology. ISBN 91.7197-666-3.
  • Larsson Brelid P, Simonson R, Bergman Ö, Nilsson T. 2000. Resistance of acetylated wood to biological degradation. Holz Roh- Werkst. 58:331–337. doi: 10.1007/s001070050439
  • Lena G, D’Annibale A, Sermanni G. 1994. Influence of the age and growth conditions on the mycelial chitin content of Lentinus edodes. J Basic Microbiol. 34:11–16. doi: 10.1002/jobm.3620340103
  • Madigan MT, Martinko JM, Parker J. 2000. Brock biology of microorganisms. Upper Saddle River (NJ): Prentice-Hall.
  • Maeda K, Ohta M, Momohara I. 2015. Relationship between the mass profile and the strength property profile of decayed wood. Wood Sci Technol. 49:331–344. doi: 10.1007/s00226-014-0696-2
  • Månsson P, Samuelsson B. 1981. Quantitative determination of O-acetyl and other O-acyl groups in cellulosic material. Svensk Papperstidning. 84:R15–R24.
  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, et al. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A. 106:1954–1959. doi: 10.1073/pnas.0809575106
  • Meyer L, Brischke C. 2015. Fungal decay at different moisture levels of selected European-grown wood species. Int Biodeter Biodegrad. 103:23–29. doi: 10.1016/j.ibiod.2015.04.009
  • Mohebby B, Mai C, Militz H. 2003. Soft rot decay in acetylated wood: Microcalorimetry and Ergosterol assay in decayed wood. 1st European Conference on Wood Modification, Ghent, Belgium.
  • Nordstierna L, Lande S, Westin M, Karlsson O, Furó I. 2008. Towards novel wood-based materials: chemical bonds between lignin-like model molecules and poly(furfuryl alcohol) studied by NMR. Holzforschung. 62:709–713. doi: 10.1515/HF.2008.110
  • Papadopoulos AN, Hill CAS. 2002. The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora puteana. Holz Roh- Werkst. 60:329–332. doi: 10.1007/s00107-002-0327-8
  • Papadopoulos AN, Hill CAS. 2003. The sorption of water vapour by anhydride modified softwood. Wood Sci Technol. 37:221–231. doi: 10.1007/s00226-003-0192-6
  • Pilgård A, Alfredsen G, Fossdal CG, Long IICJ. 2012. The effects of acetylation on the growth of Postia placenta over 36 weeks. Proceedings IRG Annual Meeting, IRG/WP 12-40589. Kuala Lumpur, Malaysia.
  • Rapp AO, Brischke C, Welzbacher CR. 2006. Interrelationship between the severity of heat treatments and sieve fractions after impact ball milling: a mechanical test for quality control of thermally modified wood. Holzforschung. 60:64–70. doi: 10.1515/HF.2006.012
  • Rapp AO, Brischke C, Welzbacher CR, Jazayeri L. 2008. Increased resistance of thermally modified Norway spruce timber (TMT) against brown rot decay by oligoporus placenta – a study on the mode of protective action. Wood Res. 53:13–26.
  • Ringman R, Pilgård A, Richter K. 2015. In vitro oxidative and enzymatic degradation of modified wood. Int Wood Prod J. 2:1–6.
  • Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, et al. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol. 194:686–701. doi: 10.1128/JB.06112-11
  • Rowell RM, Simonson R, Hess S, Plackett DV, Cronshaw D, Dunningham E. 1994. Acetyl distribution in acetylated whole wood and reactivity of isolated wood cell wall components to acetic anhydride. Wood Fiber Sci. 26:11–18.
  • Schmidt O. 2006. Wood and tree fungi. Biology, damage, protection and use. Berlin: Springer.
  • Schmöllerl B, Alfredsen G, Fossdal CG, Westin M, Steits A. 2011. Molecular investigation of Postia placenta growing in modified wood. Document No. IRG/WP 11-10756. The International Research Group on Wood Protection. Stockholm, Sweden.
  • Thybring EE. 2013. The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int Biodeter Biodegrad. 82:87–95. doi: 10.1016/j.ibiod.2013.02.004
  • Thygesen L, Elder T. 2009. Moisture in untreated, acetylated, and furfurylated Norway spruce monitored during drying below fiber saturation using time domain NMR. Wood Fiber Sci. 41:194–200.
  • Thygesen LG, Tang Engelund E, Hoffmeyer P, Engelund ET. 2010. Water sorption in wood and modified wood at high values of relative humidity. Part I: results for untreated, acetylated, and furfurylated Norway spruce. Holzforschung. 64:315–323. doi: 10.1515/hf.2010.044
  • Verma P, Dyckmans J, Militz H, Mai C. 2008. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity. Appl Microbiol Biotechnol. 80:125–133. doi: 10.1007/s00253-008-1525-z
  • Verma P, Junga U, Militz H, Mai C. 2009. Protection mechanisms of DMDHEU treated wood against white and brown rot fungi. Holzforschung. 63:371–378. doi: 10.1515/HF.2009.051
  • Wilcox WW. 1978. Review of literature on the effects of early stages of decay on wood strength. Wood Fiber. 9:252–257.
  • Winandy JE, Morrell JJ. 1993. Relationship between incipient decay, strength and chemical composition in Douglas-fir heartwood. Wood Fiber. 25:278–288.
  • Witomski P, Olek W, Bonarski JT. 2016. Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor). Constr Build Mater. 102:162–166. doi: 10.1016/j.conbuildmat.2015.10.109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.