342
Views
17
CrossRef citations to date
0
Altmetric
Articles

Microcystin concentrations can be predicted with phytoplankton biomass and watershed morphology

ORCID Icon & ORCID Icon
Pages 273-283 | Received 22 Sep 2017, Accepted 24 Feb 2018, Published online: 31 Jul 2018

References

  • Beaulieu M, Pick F, Gregory-Eaves I. 2013. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes dataset. Limnol Oceanogr. 58:1736–1746. doi: 10.4319/lo.2013.58.5.1736
  • Beaulieu M, Pick F, Palmer M, Watson S, Winter J, Zurawell R, Gregory-Eaves I, Prairie, Y. 2014. Comparing predictive cyanobacterial models from temperate regions. Can J Fish Aquat Sci. 71:1830–1839. doi: 10.1139/cjfas-2014-0168
  • Beaver JR, Manis EE, Loftin KA, Graham JL, Pollard AI, Mitchell RM. 2014. Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: a preliminary evaluation. Harmful Algae. 36:57–62. doi: 10.1016/j.hal.2014.03.005
  • Beaver JR, Scotese KC, Minerovic AD, Buccier KM, Tausz CE, Clapham WB. 2012. Ecoregion, land use and phytoplankton relationships in productive Ohio reservoirs. Inland Waters. 2:101–108. doi: 10.5268/IW-2.2.481
  • Brett MT, Muller-Navarra DC, Park SK. 2000. Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnol Oceanogr. 45:1564–1575. doi: 10.4319/lo.2000.45.7.1564
  • Burnham KP, Anderson DR, Huyvaert KP. 2010. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol. 65:23–35. doi: 10.1007/s00265-010-1029-6
  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46:1394–407. doi: 10.1016/j.watres.2011.12.016
  • Carmichael WW, Boyer GL. 2016. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae. 54:194–212. doi: 10.1016/j.hal.2016.02.002
  • Chorus I, Bartram J. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. 1st ed. In: Chorus I, Bartram J, editors. London (UK): E&FN Spon.
  • Crumpton WG, Isenhart TM, Mitchell PD. 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnol Oceanogr. 37:907–913. doi: 10.4319/lo.1992.37.4.0907
  • Davis TW, Berry DL, Boyer GL, Gobler CJ. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae. 8:715–725. doi: 10.1016/j.hal.2009.02.004
  • De Senerpont Domis LN, Elser JJ, Gsell AS, Huszar VLM, Ibelings BW, Jeppesen E, Kosten S, Mooij WM, Roland F, Sommer U, et al. 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biol. 58:463–482. doi: 10.1111/fwb.12053
  • Dolman AM, Rücker J, Pick FR, Fastner J, Rohrlack T, Mischke U, Wiedner C. 2012. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7:e38757. doi: 10.1371/journal.pone.0038757
  • Downing JA, Watson SB, McCauley E. 2001. Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci. 58:1905–1908. doi: 10.1139/f01-143
  • Falconer IR. 2005. Cyanobacterial toxins of drinking water supplies: cylindrospermopsins and microcystins. New York (NY): CRC Press.
  • Finlay K, Patoine A, Donald DB, Bogard MJ, Leavitt PR. 2010. Experimental evidence that pollution with urea can degrade water quality in phosphorus-rich lakes of the Northern Great Plains. Limnol Oceanogr. 55:1213–1230. doi: 10.4319/lo.2010.55.3.1213
  • Fox GA. 2015. What you don’t know can hurt you: censored and truncated data in ecological research. In: Fox GS, Negrete-Yankelevich S, Sosa VJ, editors. Ecological statistics contemporary theory application. Oxford (UK): Oxford University Press; p. 416.
  • Fraterrigo JM, Downing JA. 2008. The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems. 11:1021–1034. doi: 10.1007/s10021-008-9176-6
  • Giani A, Bird DF, Prairie YT, Lawrence JF. 2005. Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Can J Fish Aquat Sci. 62:2100–2109. doi: 10.1139/f05-124
  • Glibert PM, Allen JI, Bouwman AF, Brown CW, Flynn KJ, Lewitus AJ, Madden CJ. 2010. Modeling of HABs and eutrophication: status, advances, challenges. J Mar Syst. 83:262–275. doi: 10.1016/j.jmarsys.2010.05.004
  • Graham JL, Jones JR, Jones SB, Downing JA, Clevenger TE. 2004. Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Res. 38:4395–404. doi: 10.1016/j.watres.2004.08.004
  • Guildford SJ, Hecky RE. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr. 45:1213–1223. doi: 10.4319/lo.2000.45.6.1213
  • Hayes NM, Vanni MJ, Horgan MJ, Renwick WH. 2015. Drought and land use interactively affect lake phytoplankton nutrient limitation status. Ecology. 96:392–402. doi: 10.1890/13-1840.1
  • Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae. 8:3–13. doi: 10.1016/j.hal.2008.08.006
  • Helsel DR. 2006. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere. 65:2434–2439. doi: 10.1016/j.chemosphere.2006.04.051
  • Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic algae. J Phycol. 35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x
  • Hotto A, Satchwell M, Boyer G. 2005. Seasonal production and molecular characterization of microcystins in Oneida Lake, New York, USA. Environ Toxicol. 20:243–248. doi: 10.1002/tox.20104
  • Knoll LB, Hagenbuch EJ, Stevens MH, Vanni MJ, Renwick WH, Denlinger JC, Hale RS, González MJ. 2015. Predicting eutrophication status in reservoirs at large spatial scales using landscape and morphometric variables. Inland Waters. 5:203–214. doi: 10.5268/IW-5.3.812
  • Knoll LB, Sarnelle O, Hamilton SK, Kissman CEH, Wilson AE, Rose JB, Morgan MR. 2008. Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin concentrations in low-nutrient lakes. Can J Fish Aquat Sci. 65:448–455. doi: 10.1139/f07-181
  • Knoll LB, Vanni MJ, Renwick WH. 2003. Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use. Limnol Oceanogr. 48:608–617. doi: 10.4319/lo.2003.48.2.0608
  • Mazerolle MJ. 2016. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c).R package verion 2.1-1. https://cran.r-project.org/package = AICcmodav
  • Mette EM, Vanni MJ, Newell JM, González MJ. 2011. Phytoplankton communities and stoichiometry are interactively affected by light, nutrients, and fish. Limnol Oceanogr. 56:1959–1975. doi: 10.4319/lo.2011.56.6.1959
  • Monchamp ME, Pick FR, Beisner BE, Maranger R. 2014. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLOS ONE. 9:e85573. doi: 10.1371/journal.pone.0085573
  • Oh HM, Lee SJ, Jang MH, Yoon BD. 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl Environ Microbiol. 66:176–179. doi: 10.1128/AEM.66.1.176-179.2000
  • O’Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae. 14:313–334. doi: 10.1016/j.hal.2011.10.027
  • Orihel DM, Bird DF, Brylinsky M, Huirong C, Donald DB, Huang DY, Giani A, Kinniburgh D, Kling H, Kotak BG, et al. 2012. High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Can J Fish Aquat Sci. 69:1457–1462. doi: 10.1139/f2012-088
  • Paerl HW, Fulton RS, Moisander PH, Dyble J. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J. 1:76–113. doi: 10.1100/tsw.2001.16
  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science. 320:57–58. doi: 10.1126/science.1155398
  • Paerl HW, Paul VJ. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46:1349–1363. doi: 10.1016/j.watres.2011.08.002
  • Pick FR. 2016. Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria. Can J Fish Aquat Sci. 1158 :1–10.
  • Poste AE, Hecky RE, Guildford SJ. 2011. Evalutaing microcystin exposure risk through fish consumption. Environ Sci Technol. 45:5806–5811. doi: 10.1021/es200285c
  • Romo S, Soria J, Fernández F, Ouahid Y, Barón-Solá Á. 2013. Water residence time and the dynamics of toxic cyanobacteria. Freshwater Biol. 58:513–522. doi: 10.1111/j.1365-2427.2012.02734.x
  • Sarnelle, O, Wilson AE. 2005. Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr. 50:1565–1570. doi: 10.4319/lo.2005.50.5.1565
  • Scott JT, McCarthy MJ, Otten TG, Steffen MM, Baker BC, Grantz EM, Wilhelm SW, Paerl HW. 2013. Comment: an alternative interpretation of the relationship between TN:TP and microcystins in Canadian lakes. Can J Fish Aquat Sci. 70:1265–1268. doi: 10.1139/cjfas-2012-0490
  • Sivonen K. 1996. Cyanobacterial toxins and toxin production. Phycologia. 36:12–24.
  • Smayda TJ. 2008. Complexity in the eutrophication–harmful algal bloom relationship, with comment on the importance of grazing. Harmful Algae. 8:140–151. doi: 10.1016/j.hal.2008.08.018
  • Smith VH. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science. 221:669–671.
  • Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca T, Catalan J, Domaizon I, Gulizzoni P, Lami A, McGowan S, et al. 2015. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett. 18:375–384. doi: 10.1111/ele.12420
  • Taranu ZE, Gregory-Eaves I, Steele RJ, Beaulieu M, Legendre P. 2017. Predicting microcystin concentrations in lakes and reservoirs at a continental scale: a new framework for modelling an important health risk factor. Glob Ecol Biogeogr. 26:625–637. doi: 10.1111/geb.12569
  • Therneau TM. 2015. A package for survival analysis in S. version 2.38. https://CRAN.R-project.org/package=survival
  • Thornton KW. 1990. Persepctives on reservoir limnology. In: Thornton KW, Kimmel BL, Payne FE, editors. Reservoir limnology ecological perspectives. New York (NY): Wiley; p. 1–14.
  • [USEPA] US Environmental Protection Agency. 2009. National lake assessment: a collaborative survey of the nation’s lakes. EPA 841-R-09-00 U.S. Environmental Protection Agency Office of Water and Office of Research and Development, Washington, D.C. 90 p.
  • Vanni MJ, Renwick WH, Bowling AM, Horgan MJ, Christian AD. 2011. Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use. Freshwater Biol. 56:791–811. doi: 10.1111/j.1365-2427.2010.02436.x
  • Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, Davis TW, Paerl HW, Huisman J. 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae. 54:145–159. doi: 10.1016/j.hal.2015.12.006
  • Vollenweider RA. 1976. Advances in defining critical loading levels of phosphorus in lake eutrophication. Mem Ist Ital Hdrobiol. 33:53–83.
  • Van de Waal DB, Smith VH, Declerck SAJ, Stam ECM, Elser JJ. 2014. Stoichiometric regulation of phytoplankton toxins. Ecol Lett. 17:736–742. doi: 10.1111/ele.12280
  • Van de Waal DB, Verspagen JMH, Lürling M, Van Donk E, Visser PM, Huisman J. 2009. The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett. 12:1326–1335. doi: 10.1111/j.1461-0248.2009.01383.x
  • Wagner C, Adrian R. 2009. Exploring lake ecosystems: hierarchy responses to long-term change? Glob Change Biol. 15:1104–1115. doi: 10.1111/j.1365-2486.2008.01833.x
  • Wagner C, Adrian R. 2011. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshwater Biol. 56:1949–1961. doi: 10.1111/j.1365-2427.2011.02623.x
  • Warton DI, Hui FKC. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology. 92:3–10. doi: 10.1890/10-0340.1
  • Watson SB, McCauley E, Downing JA. 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr. 42:487–495.
  • Wetzel RG, Likens GE. 1991. Limnological analyses. 2nd ed. New York (NY): Springer-Verlag.
  • Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP. 2006. Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol. 75:1182–1189. doi: 10.1111/j.1365-2656.2006.01141.x
  • Yuan LL, Pollard AI, Pather S, Oliver JL, D’Anglada L. 2014. Managing microcystin: identifying national-scale thresholds for total nitrogen and chlorophyll a. Freshwater Biol. 59:1970–1981. doi: 10.1111/fwb.12400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.