1,209
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effect of small water retention structures on diffusive CO2 and CH4 emissions along a highly impounded river

ORCID Icon, , , &
Pages 449-460 | Received 02 Jun 2017, Accepted 11 Jan 2018, Published online: 03 Oct 2018

References

  • Abril G. 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cy. 19:1–16. doi: 10.1029/2005GB002457
  • Acuña V, Tockner K. 2010. The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Glob Chang Biol. 16:2638–2650.
  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ. 9:53–60. doi: 10.1890/100014
  • Bade DL. 2009. Gas exchange across the air-water interface. In: Gene EL, editor. Encyclopedia of inland waters. Oxford (UK): Academic Press; p. 70–78.
  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci. 4:593–596. doi: 10.1038/ngeo1211
  • Bastviken D, Tranvik L, Downing J. 2011. Freshwater methane emissions offset the continental carbon sink. Science. 331:50. doi: 10.1126/science.1196808
  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009a. The boundless carbon cycle. Nat Geosci. 2:598–600. doi: 10.1038/ngeo618
  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F. 2009b. Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci. 2:595–595. doi: 10.1038/ngeo602
  • Beaulieu J, McManus M, Nietch C. 2016. Estimates of reservoir methane emissions based on a spatially-balanced probabilistic-survey. Limnol Oceanogr. 61:27–40. doi: 10.1002/lno.10284
  • Casas-Ruiz JP, Tittel J, von Schiller D, Catalán N, Obrador B, Gómez-Gener L, Zwirnmann E, Sabater S, Marcé R. 2015. Drought-induced discontinuities in the source and degradation of dissolved organic matter in a Mediterranean river. Biogeochemistry. 127:1–15.
  • Cole JJ, Pace ML, Carpenter SR, Kitchell JF. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr. 45:1718–1730. doi: 10.4319/lo.2000.45.8.1718
  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 10:172–185. doi: 10.1007/s10021-006-9013-8
  • Crawford JT, Loken LC, Stanley EH, Stets EG, Dornblaser MM, Striegl RG. 2016. Basin scale controls on CO2 and CH4 emissions from the Upper Mississippi River. Geophys Res Lett. 43:1973–1979. doi: 10.1002/2015GL067599
  • Crawford JT, Lottig NR, Stanley EH, Walker JF, Hanson PC, Finlay JC, Striegl RG. 2014. CO2 and CH4 emissions from streams in a lake-rich landscape: patterns, controls and regional significance. Glob Biogeochem Cy. 28:197–210. doi: 10.1002/2013GB004661
  • Crawford JT, Stanley EH. 2016. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes. Ecol Appl. 26:1581–1591. doi: 10.1890/15-1330
  • Deemer B, Harrison J, Li S, Beaulieu JJ, Delsontro T. 2016. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience. 66:949–964. doi: 10.1093/biosci/biw117
  • Delsontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B. 2010. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol. 44:2419–2425. doi: 10.1021/es9031369
  • Deshmukh C, Guérin F, Labat D, Pighini S, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Serça D. 2015. Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosci Discuss. 12:11313–11347. doi: 10.5194/bgd-12-11313-2015
  • Döll P, Fiedler K, Zhang J. 2009. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci Discuss. 6:4773–4812. doi: 10.5194/hessd-6-4773-2009
  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ. 2006. Abundance and size distribution of lakes, ponds and impoundments. Limnol Oceanogr. 51:2388–2397. doi: 10.4319/lo.2006.51.5.2388
  • Duarte CM, Prairie YT. 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems. 8:862–870. doi: 10.1007/s10021-005-0177-4
  • Fearnside PM, Pueyo S. 2012. Greenhouse-gas emissions from tropical dams. Nat Clim Change. 2:382–384. doi: 10.1038/nclimate1540
  • Frankignoulle M. 1988. Field measurements of air-sea CO2 exchange. Limnol Oceanogr. 33:313–322. doi: 10.4319/lo.1988.33.3.0313
  • Frissell CA, Liss WJ, Warren CE, Hurley MD. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manage. 10:199–214. doi: 10.1007/BF01867358
  • Galy-Lacaux C, Delmas R, Labroue L, Gosse P. 1997. Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cy. 11:471–483. doi: 10.1029/97GB01625
  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S. 2011. Mediterranean water resources in a global change scenario. Earth-Sci Rev. 105:121–139. doi: 10.1016/j.earscirev.2011.01.006
  • Giles J. 2006. Methane quashes green credentials of hydropower. Nature. 444:524–525.
  • Gómez-Gener L, Obrador B, von Schiller D, Marcé R, Casas-Ruiz JP, Proia L, Acuña V, Catalán N, Muñoz I, Koschorreck M. 2015. Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry. 125:409–426. doi: 10.1007/s10533-015-0139-7
  • Gómez-Gener L, von Schiller D, Marcé R, Arroita M, Casas-Ruiz JP, Staehr PA, Acuña V, Sabater S, Obrador B. 2016. Low contribution of internal metabolism to carbon dioxide emissions along lotic and lentic environments of a Mediterranean fluvial network. J Geophys Res-Biogeosci. 121:3030–3044. doi: 10.1002/2016JG003549
  • Grill G, Lehner B, Lumsdon AE, MacDonald GK, Zarfl C, Reidy Liermann C. 2015. Dams reshape the world’s rivers. Nature. 517:530.
  • Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R. 2006. Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett. 33:1–6. doi: 10.1029/2006GL027929
  • Guérin F, Abril G, Serça D, Delon C, Richard S, Delmas R, Tremblay A, Varfalvy L. 2007. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Mar Syst. 66:161–172. doi: 10.1016/j.jmarsys.2006.03.019
  • Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe PA, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM. 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry. 93:143–157. doi: 10.1007/s10533-008-9272-x
  • Haxton TJ, Findlay CS. 2008. Meta-analysis of the impacts of water management on aquatic communities. Can J Fish Aquat Sci. 65:437–447. doi: 10.1139/f07-175
  • Hotchkiss ER, Hall RO, Sponseller R, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J. 2015. Sources and control of CO2 emissions change with the size of sreams and rivers. Nat Geosci. 8:696–699. doi: 10.1038/ngeo2507
  • Houser JN, Bierman DW, Burdis RM, Soeken-Gittinger LA. 2010. Longitudinal trends and discontinuities in nutrients, chlorophyll, and suspended solids in the Upper Mississippi River: implications for transport, processing, and export by large rivers. Hydrobiologia. 651:127–144. doi: 10.1007/s10750-010-0282-z
  • [IPCC] Intergovernmental Panel on Climate Change. 2013. Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, et al. editors. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK) and New York (NY): Cambridge University Press.
  • Jähne B, Münnich K. 1987. On the parameters influencing air-water gas exchange. J Geophys Res Ocean. 92:1937–1942. doi: 10.1029/JC092iC02p01937
  • Keller M, Stallard RF. 1994. Methane emission by bubbling from Gatun Lake, Panama. J Geophys Res. 99:8307–8319. doi: 10.1029/92JD02170
  • Kemenes A, Forsberg BR, Melack JM. 2007. Methane release below a tropical hydroelectric dam. Geophys Res Lett. 34:1–5. doi: 10.1029/2007GL029479
  • Kondolf MG, Batalla RJ. 2005. Chapter 11. Hydrological effects of dams and water diversions on rivers of Mediterranean-climate regions: examples from California. Dev Earth Surf Process. 7:197–211. doi: 10.1016/S0928-2025(05)80017-3
  • Lapierre J-F, Guillemette F, Berggren M, Del Giorgio PA. 2013. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat Commun. 4:2972. doi: 10.1038/ncomms3972
  • Lehner B, Liermann CR, Revenga C, Vörömsmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, et al. 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ. 9:494–502. doi: 10.1890/100125
  • Lundin EJ, Giesler R, Persson A, Thompson MS, Karlsson J. 2013. Integrating carbon emissions from lakes and streams in a subarctic catchment. J Geophys Res Biogeosciences. 118:1200–1207. doi: 10.1002/jgrg.20092
  • Maeck A, Delsontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A. 2013. Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol. 47:8130–8137. doi: 10.1021/es4003907
  • Marcé R, Obrador B, Morguí J, Riera JL, López P, Armengol J. 2015. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nat Geosci. 8:107–111. doi: 10.1038/ngeo2341
  • McDonald CP, Stets EG, Striegl RG, Butman D. 2013. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Glob Biogeochem Cy. 27:285–295. doi: 10.1002/gbc.20032
  • Millero F. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta. 59:661–677. doi: 10.1016/0016-7037(94)00354-O
  • Montgomery DR. 1999. Process domains and the river continuum. J Am Water Resour Assoc. 35:397–410. doi: 10.1111/j.1752-1688.1999.tb03598.x
  • Nilsson C, Reidy CA, Dynesius M, Revenga C. 2005. Fragmentation and flow regulation of the world’s large river systems. 308:405–408.
  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2015. Vegan: community ecology package. R Package version 2.2-1. http://CRAN.R-project.org/package=vegan
  • Pavón D. 2010. Desarrollo y decadencia hidroeléctrica en los pequeños ríos del litoral mediterráneo catalán. El caso de las cuencas del Fluvià y de la Muga [Development and hydroelectric decadence in the small rivers of the Catalan Mediterranean coast. The case of the Fluvià and Muga basins]. Rev Hist Ind. 42:43–87.
  • Ponsatí L, Acuña V, Aristi I, García-Berthou E, von Schiller D, Elosegi A, Sabater S. 2015. Biofilm responses to flow regulation by dams in Mediterranean rivers. River Res Appl. 31:1003–1016. doi: 10.1002/rra.2807
  • Proia L, von Schiller D, Gutierrez C, Casas-Ruiz JP, Gómez-Gener L, Marcé R, Obrador B, Acuña V, Sabater S. 2016. Microbial carbon processing along a river discontinuum. Freshwater Sci. 35:1133–1147. doi: 10.1086/689181
  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, et al. 2013. Global carbon dioxide emissions from inland waters. Nature. 503:355–359. doi: 10.1038/nature12760
  • Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D. 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr-Fluids Environ. 2:41–53. doi: 10.1215/21573689-1597669
  • Sobek S, DelSontro T, Wongfun N, Wehrli B. 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett. 39:2–5. doi: 10.1029/2011GL050144
  • Stanford JA, Ward J V. 2001. Revisiting the serial discontinuity concept. Regul Riv-Res Manage. 17:303–310. doi: 10.1002/rrr.659
  • Stanley EH, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK. 2016. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr. 86:146–171. doi: 10.1890/15-1027
  • Stets EG, Striegl RG, Aiken GR, Rosenberry DO, Winter TC. 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res Biogeosciences. 114:1–14. doi: 10.1029/2008JG000783
  • St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience. 50:766. doi: 10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
  • Striegl RG, Dornblaser MM, McDonald CP, Rover JR, Stets EG. 2012. Carbon dioxide and methane emissions from the Yukon River system. Glob Biogeochem Cy. 26:GB0E05.
  • Syvitski J, Vörösmarty C, Kettner AJ, Green P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science. 308:376–380. doi: 10.1126/science.1109454
  • Teodoru CR, Prairie YT, del Giorgio PA. 2010. Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in northern Quebec, Canada. Ecosystems. 14:28–46. doi: 10.1007/s10021-010-9393-7
  • Thorp JH, Thoms MC, Delong MD. 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl. 22:123–147. doi: 10.1002/rra.901
  • Tranvik L, Downing J, Cotner J. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceangr. 54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298
  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci. 37:130–137. doi: 10.1139/f80-017
  • von Schiller D, Aristi I, Ponsatí L, Arroita M, Acuña V, Elosegi A, Sabater S. 2015. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. Sci Total Environ. 540:168–177. doi: 10.1016/j.scitotenv.2015.07.017
  • Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res Ocean. 97:7373–7382. doi: 10.1029/92JC00188
  • Ward JV, Stanford JA. 1983. Serial discontinuity concept of lotic ecosystems. In: Fontain TD, Bartell SM, editors. Dynamics of Lotic Ecosystems. Ann Arbor (MI): Ann Arbor Sci; p. 29–42.
  • Wehrli B. 2013. Conduits of the carbon cycle. Nature. 503:9–10. doi: 10.1038/503346a
  • Weiss R. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem. 2:203–215. doi: 10.1016/0304-4203(74)90015-2
  • Wetzel RG. 2001. Limnology—lake and river ecosystems. San Diego (CA): Academic.
  • Winemiller KO, Flecker AS, Hoeinghaus DJ. 2010. Patch dynamics and environmental heterogeneity in lotic ecosystems. J N Am Benthol Soc. 29:84–99. doi: 10.1899/08-048.1
  • Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 58:109–130. doi: 10.1016/S0169-7439(01)00155-1