206
Views
2
CrossRef citations to date
0
Altmetric
Articles

Long-term changes in spatially structured benthic diatom assemblages in a major subtropical wetland under restoration

ORCID Icon &
Pages 434-448 | Received 11 Apr 2018, Accepted 10 Jul 2018, Published online: 27 Nov 2018

References

  • Coyle JR, Hurlbert AH, White EP. 2013. Opposing mechanisms drive richness patterns of core and transient bird species. Am Nat. 181:83–90. doi: 10.1086/669903
  • Davis SM, Gaiser EE, Loftus WF, Huffman AE. 2005. Southern marl prairies conceptual ecological model. Wetlands. 25:821–831. doi: 10.1672/0277-5212(2005)025[0821:SMPCEM]2.0.CO;2
  • Dessu SB, Price RM, Troxler TG, Kominoski JS. 2018. Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades. J Environ Manage. 211:164–176. doi: 10.1016/j.jenvman.2018.01.025
  • Dixit SS, Smol JP, Kingston JC, Charles DF. 1992. Diatoms: powerful indicators of environmental change. Environ Sci Technol. 26:22–33. doi: 10.1021/es00025a002
  • Donar CM, Condon KW, Gantar M, Gaiser EE. 2004. A new technique for examining the physical structure of Everglades floating periphyton mat. Nova Hedwigia. 78:107–119. doi: 10.1127/0029-5035/2004/0078-0107
  • Douglas MS. 2007. The Everglades: river of grass. Sarasota (FL): Pineapple Press.
  • Estenoz SA, Bush E. 2015. Everglades restoration science and decision making in the face of climate change: a management perspective. Environ Manage. 55:876–883. doi: 10.1007/s00267-015-0452-x
  • Flower H, Rains M, Fitz HC. 2017. Visioning the future: scenarios modeling of the Florida Coastal Everglades. Environ Manage. 5:989–1009. doi: 10.1007/s00267-017-0916-2
  • Gaiser EE, Gottlieb AD, Lee SS, Trexler JC. 2015. The importance of species-based microbial assessment of water quality in freshwater everglades wetlands. In: Entry J, Jayachandran K, Gottlieb AD, Ogram A, editors. Microbiology of the Everglades ecosystem. Boca Raton, (FL): CRC Press; p. 115–130.
  • Gaiser EE, La Hee J, Tobias F, Wachnicka A. 2010. Mastogloia smithii var. lacustris Grun.: a structural engineer of calcareous mats in karstic subtropical wetlands. P Acad Nat Sci Philadelphia. 160:99–112. doi: 10.1635/053.160.0111
  • Gaiser EE, McCormick PV, Hagerthey SE, Gottlieb AD. 2011. Landscape patterns of periphyton in the Florida Everglades. Crit Rev Environ Sci Technol. 41(S1):92–120. doi: 10.1080/10643389.2010.531192
  • Gaiser EE, Richards JH, Trexler JC, Jones RD, Childers DL. 2006. Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limno Oceanogr. 51:617–630. doi: 10.4319/lo.2006.51.1_part_2.0617
  • Gaiser EE, Rühland K. 2010. Diatoms as indicators of environmental change in wetlands and peatlands. In: Smol JP, Stormer EF, editors. The diatoms: applications for the environmental and earth sciences. Cambridge University Press; p. 473–496.
  • Gaiser EE, Scinto LJ, Richards JH, Jayachandran K, Childers DL, Trexler JC, Jones RD. 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Res. 38:507–516. doi: 10.1016/j.watres.2003.10.020
  • Gaston KJ, Blackburn TM, Gregory RD, Greenwood JJD. 1998. The anatomy of the interspecific abundance–range size relationship for the British avifauna. Ecol Lett. 1:38–46. doi: 10.1046/j.1461-0248.1998.00004.x
  • Gleason PJ, Spackman WS Jr. 1974. Calcareous periphyton and water chemistry in the Everglades. In: Gleason PJ, editor. Environments of South Florida: present and past. Miami (FL): Miami Geological Society; p. 146–181.
  • Glenn SM, Collins SL. 1990. Patch structure in tallgrass prairies: dynamics of satellite species. Oikos. 57:229–236. doi: 10.2307/3565944
  • Gottlieb AD, Richards JH, Gaiser EE. 2006. Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes. Hydrobiologia. 569:195–207. doi: 10.1007/s10750-006-0132-1
  • Hagerthey SE, Bellinger BJ, Wheeler K, Gantar M, Gaiser EE. 2011. Everglades periphyton: a biogeochemical perspective. Crit Rev Environ Sci Technol. 41(S1):309–343. doi: 10.1080/10643389.2010.531218
  • Hair JF Jr, Anderson RE, Tatham RL, Black WC. 1995. Multivariate data analysis. 3rd ed. New York (NY): Macmillan.
  • Hanski I. 1982. The core and satellite species hypothesis. Oikos. 38:210–221. doi: 10.2307/3544021
  • Hasle G, Fryxell G. 1970. Diatoms: cleaning and mounting for light and electron microscopy. T Am Microsc Soc. 89:470–474. doi: 10.2307/3224555
  • Hillebrand H, Watermann F, Karez R, Berninger UG. 2001. Differences in species richness patterns between unicellular and multicellular organisms. Oecologia. 126:114–124. doi: 10.1007/s004420000492
  • Holt AR, Gaston KJ. 2003. Interspecific abundance occupancy relationship of British mammals and birds: is it possible to explain the residual variation? Glob Ecol Biogeog. 12:37–46. doi: 10.1046/j.1466-822X.2003.00315.x
  • Ivanoff D, Pietro K, Chen H, Gerry L. 2013. Chapter 5: Performance and optimization of the Everglades stormwater treatment areas. In: 2013 South Florida environmental report. West Palm Beach (FL): South Florida Water Management District; p. 1–75.
  • Iwaniec DM. 2008. Regulation and organization of periphyton from the Florida Everglades, U.S.A [master’s thesis]. Miami (FL): Florida International University.
  • Johnson JB, Omland KS. 2004. Model selection in ecology and evolution. Trends Ecol Evol. 19:101–108. doi: 10.1016/j.tree.2003.10.013
  • Komárek J, Sirová D, Komárková J, Rejmánková E. 2015. Structure and function of cyanobacterial mats in wetlands of Belize. In: Entry JA, Gottlieb AD, Jayachandran K, Ogram A, editors. Microbiology of the everglades ecosystem. Boca Raton (FL): CRC Press; p. 194–217.
  • Krammer K, Lange-Bertalot H. 1986. Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, editors. Süsswasser flora von Mitteleuropa, Band 2/1. Stuttgart (Germany) and New York (NY): Gustav Fischer Verlag.
  • Krammer K, Lange-Bertalot H. 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, editors. Süsswasserflora von Mitteleuropa, Band 2/2. Jena (Germany): VEB Gustav Fischer Verlag.
  • Krammer K, Lange-Bertalot H. 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, editors. Süsswasserflora von Mitteleuropa, Band 2/3. Stuttgart, Jena (Germany): Gustav Fischer Verlag.
  • Krammer K, Lange-Bertalot H. 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1-4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D, editors. Süsswasserflora von Mitteleuropa, Band 2/4. Stuttgart, Jena (Germany): Gustav Fischer Verlag.
  • La Hée J, Gaiser EE. 2012. Benthic diatom assemblages as indicators of water quality in the Everglades and three tropical karstic wetlands. J N Am Benthol Soc. 31:205–221.
  • Lang TA, Oladeji O, Josan M, Daroub S. 2010. Environmental and management factors that influence drainage water P loads from Everglades Agricultural Area farms of South Florida. Agric Ecosyst Environ. 138:170–180. doi: 10.1016/j.agee.2010.04.015
  • Lee SS. 2014. Mechanisms of diatom assembly in a hydrologically-managed subtropical wetland [dissertation]. Miami (FL): Florida International University.
  • Lee SS, Gaiser EE, Trexler JC. 2013. Diatom-based models for inferring hydrology and periphyton abundance in a subtropical karstic wetland: implications for ecosystem-scale bioassessment. Wetlands. 33:157–173. doi: 10.1007/s13157-012-0363-z
  • Lee SS, Gaiser EE, Van De Vijver B, Edlund MB, Spaulding SA. 2014. Morphology and typification of Mastogloia smithii and M. lacustris, with descriptions of two new species from the Florida Everglades and the Caribbean region. Diatom Res. 29:325–350. doi: 10.1080/0269249X.2014.889038
  • Mackay AW, Davidson T, Wolski P, Woodward S, Mazebedi R, Masamba WRL, Todd M. 2012. Diatom sensitivity to hydrological and nutrient variability in a subtropical, flood-pulse wetland. Ecohydrology. 5:491–502. doi: 10.1002/eco.242
  • Magurran AE, Henderson PA. 2003. Explaining the excess of rare species in natural species abundance distributions. Nature. 422:714–716. doi: 10.1038/nature01547
  • Marazzi L, Gaiser EE, Jones VJ, Tobias FAC, Mackay AW. 2017a. Algal richness and life-history strategies are influenced by hydrology and phosphorus in two major subtropical wetlands. Freshwater Biol. 62:274–290. doi: 10.1111/fwb.12866
  • Marazzi L, Gaiser EE, Tobias FAC. 2017b. Phosphorus scarcity and desiccation stress increase the occurrence of dominant taxa in wetland benthic primary producer communities. Aquat Ecol. 51:571–589. doi: 10.1007/s10452-017-9637-0
  • Mazzei V, Gaiser EE. 2017. Scale and spatial consistency of specialization in an endemic and abundant freshwater diatom from the Caribbean Basin. Freshwater Sci. 36:542–554. doi: 10.1086/693105
  • Mazzei V, Gaiser EE. 2018. Diatoms as tools for inferring ecotone boundaries in a coastal freshwater wetland threatened by saltwater intrusion. Ecol Indic. 88:190–204. doi: 10.1016/j.ecolind.2018.01.003
  • Obeysekera J, Barnes J, Nungesser M. 2015. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change. Environ Manage. 55:749–762. doi: 10.1007/s00267-014-0315-x
  • Patrick R, Reimer CW. 1966. The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 1-Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Acad Nat Sci Philadelphia, Monograph No. 13.
  • Patrick R, Reimer CW. 1975. The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 2, Part 1-Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemaceae. Acad Nat Sci Philadelphia, Monograph No. 13.
  • Payne GG, Weaver KC, Goforth G, Piccone T. 2005. In: South Florida environmental report. Chapter 2C: status of phosphorus and nitrogen in the everglades protection area. West Palm Beach (FL): South Florida Water Management District; p. 1–26.
  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2018. nlme: linear and nonlinear mixed effects models. R package version. 3.1-131.1. https://CRAN.R-project.org/package=nlme>
  • Pinowska A, Francoeur SN, Manoylov KM. 2008. Substratum-associated microbiota. Water Environ Res (Lit Rev). 80:1858–1891. doi: 10.2175/106143008X328842
  • Potapova M, Charles DF. 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol Indic. 7:48–70. doi: 10.1016/j.ecolind.2005.10.001
  • Price RM, Swart PK. 2006. Geochemical indicators of groundwater recharge in the surficial aquifer system, Everglades National Park, Florida, USA. In: Harmon RS, Wicks D, editors. Perspectives on karst geomorphology, hydrology, and geochemistry – a tribute volume to Derek C. Ford and William B. White: GSA Special Paper. 404:251–266.
  • R Core Team. 2014. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org
  • Ramachandra TV, Chandran MS, Joshi NV, Karthick B, Mukri VD. 2015. Ecohydrology of lotic systems in Uttara Kannada, Central Western Ghats, India. In: Ramkumar M, Kumaraswamy K, Mohanraj R, editors. Environmental management of river basin ecosystems. Cham (Switzerland): Springer; p. 621–665.
  • Raschke RL. 1993. Diatom (Bacillariophyta) community response to phosphorus in the Everglades National Park, USA. Phycologia. 32:48–58. doi: 10.2216/i0031-8884-32-1-48.1
  • Rautio M, Vincent WF. 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biol. 51:1038–1052. doi: 10.1111/j.1365-2427.2006.01550.x
  • Rober AR, Wyatt KH, Stevenson RJ, Turetsky MR. 2014. Spatial and temporal variability of algal community dynamics and productivity in floodplain wetlands along the Tanana River, Alaska. Freshwater Sci. 33:765–777. doi: 10.1086/676939
  • Robinson GGC, Gurney SE, Goldsborough LG. 2000. Algae in prairie wetlands. In: Murkin HR, Van Der Valk AG, Clark WR. Prairie wetland ecology. Ames (IA): Iowa State University Press. p. 163–198.
  • Rosen BH, Mareš J. 2016. Catalog of microscopic organisms of the Everglades, Part 1 – The cyanobacteria. US Geological Survey. (No. 2016-1114; p. 1–108).
  • Royle JA, Nichols JD. 2003. Estimating abundance from repeated presence–absence data or point counts. Ecology. 84:777–790. doi: 10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
  • Saha AK, Moses CS, Price RM, Engel V, Smith TJ, Anderson G. 2011. A hydrologic budget (2002–2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow. Estuar Coast. 35:459–474. doi: 10.1007/s12237-011-9454-y
  • Scinto LJ, Reddy KR. 2003. Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquat Bot. 77:203–222. doi: 10.1016/S0304-3770(03)00106-2
  • Soininen J, Heino J. 2005. Relationships between local population persistence, local abundance and regional occupancy of species: distribution patterns of diatoms in boreal streams. J Biogeogr. 32:1971–1978. doi: 10.1111/j.1365-2699.2005.01342.x
  • Sola AD, Marazzi L, Flores MM, Kominoski JS, Gaiser EE. 2018. Short-term effects of drying-rewetting and long-term effects of nutrient loading on periphyton N:P stoichiometry. Water. 10:105.
  • Solorzano L, Sharp JH. 1980. Determination of total dissolved P and particulate P in natural waters. Limnol Oceanogr. 25:754–758. doi: 10.4319/lo.1980.25.4.0754
  • Sullivan PL, Price RM, Schedlbauer JL, Saha A, Gaiser EE. 2014. The influence of hydrologic restoration on groundwater-surface water interactions in a karst wetland, The Everglades (FL, USA). Wetlands. 34:23–35. doi: 10.1007/s13157-013-0451-8
  • Surratt D, Aumen NG. 2014. Factors influencing phosphorus levels delivered to Everglades National Park, Florida, USA. Environ Manage. 54:223–239. doi: 10.1007/s00267-014-0288-9
  • Trexler JC, Loftus WF. 2016. Invertebrates of the Florida Everglades. In: Batzer D, Boix D, editors. Invertebrates in freshwater wetlands: an international perspective on their ecology. New York (NY): Springer; p. 321–356.
  • Ulrich W, Zalewski M. 2006. Abundance and co-occurrence patterns of core and satellite species of ground beetles on small lake islands. Oikos. 114:338–348. doi: 10.1111/j.2006.0030-1299.14773.x
  • [USEPA] US Environmental Protection Agency. 1983. Methods for chemical analysis of water and wastes. Chapter 365.1 Revision March 83. Cincinnati (OH): USEPA.
  • Wehr JD, Sheath RG, Kociolek JP. 2015. Freshwater algae of North America: ecology and classification. London (UK): Elsevier.
  • Winsborough BM, Golubic S. 1987. The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J Phycol. 23:195–201. doi: 10.1111/j.1529-8817.1987.tb04444.x
  • Wright JP, Jones CG. 2006. The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. BioScience. 56:203–209. doi: 10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.