149
Views
4
CrossRef citations to date
0
Altmetric
Articles

A Bayesian network model for estimating stoichiometric ratios of lake seston components

ORCID Icon &
Pages 61-72 | Received 24 May 2018, Accepted 05 Feb 2019, Published online: 11 Apr 2019

References

  • Arbuckle KE, Downing JA. 2001. The influence of watershed land use on lake N:P in a predominantly agricultural landscape. Limnol Oceanogr. 46(4):970–975. doi: 10.4319/lo.2001.46.4.0970
  • Cotner JB, Hall EK, Scott T, Heldal M. 2010. Freshwater bacteria are stoichiometrically flexible with a nutrient composition similar to seston. Front Microbiol. 1:132.
  • Dodds WK. 2006. Nutrients and the “dead zone”: the link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico. Front Ecol Environ. 4(4):211–217. doi: 10.1890/1540-9295(2006)004[0211:NATDZT]2.0.CO;2
  • Downing JA, McCauley E. 2003. The nitrogen:phosphorus relationship in lakes. Limnol Oceanogr. 37(5):936–945. doi: 10.4319/lo.1992.37.5.0936
  • Effler SW, Prestigiacomo AR, Peng F, Gelda R, Matthews DA. 2014. Partitioning the contributions of minerogenic particles and bioseston to particulate phosphorus and turbidity. Inland Waters. 4(2):179–192. doi: 10.5268/IW-4.2.681
  • Elser JJ, Andersen T, Baron JS, Bergstrom A-K, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO. 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science. 326(5954):835–837. doi: 10.1126/science.1176199
  • Elser JJ, Hamilton A. 2007. Stoichiometry and the new biology: the future is now. PLOS Biol. 5(7):e181. doi: 10.1371/journal.pbio.0050181
  • Elser JJ, Hassett RP. 1994. A stoichiometric analysis of the zooplankton–phytoplankton interaction in marine and freshwater ecosystems. Nature. 370(6486):211–213. doi: 10.1038/370211a0
  • Elser JJ, Urabe J. 1999. The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology. 80(3):735–751. doi: 10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2
  • Findlay S, Pace M, Lints D. 1991. Variability and transport of suspended sediment, particulate and dissolved organic carbon in the tidal freshwater Hudson River. Biogeochemistry. 12(3):149–169. doi: 10.1007/BF00002605
  • Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models. New York (NY): Cambridge University Press.
  • Glibert PM, Fullerton D, Burkholder JM, Cornwell JC, Kana TM. 2011. Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco estuary and comparative systems. Rev Fish Sci. 19(4):358–417. doi: 10.1080/10641262.2011.611916
  • Grove MK, Bilotta GS. 2014. On the use of loss-on-ignition techniques to quantify fluvial particulate organic carbon. Earth Surf Process Landf. 39(9):1146–1152. doi: 10.1002/esp.3509
  • Guildford SJ, Hecky RE. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr. 45(6):1213–1223. doi: 10.4319/lo.2000.45.6.1213
  • Hamilton SK, Sippel SJ, Bunn SE. 2005. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnol Oceanogr-Meth. 3(3):149–157. doi: 10.4319/lom.2005.3.149
  • Hassett RP, Cardinale B, Stabler LB, Elser JJ. 1997. Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton–phytoplankton interaction. Limnol Oceanogr. 42(4):648–662. doi: 10.4319/lo.1997.42.4.0648
  • Hecky RE, Campbell P, Hendzel LL. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr. 38(4):709–724. doi: 10.4319/lo.1993.38.4.0709
  • Hessen DO, Andersen T, Brettum P, Faafeng BA. 2003. Phytoplankton contribution to sestonic mass and elemental ratios in lakes: implications for zooplankton nutrition. Limnol Oceanogr. 48(3):1289–1296. doi: 10.4319/lo.2003.48.3.1289
  • Hillebrand H, Steinert G, Boersma M, Malzahn A, Meunier CL, Plum C, Ptacnik R. 2013. Goldman revisited: faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol Oceanogr. 58(6):2076–2088. doi: 10.4319/lo.2013.58.6.2076
  • Hoyer MV, Jones JR. 1983. Factors affecting the relation between phosphorus and chlorophyll a in Midwestern reservoirs. Can J Fish Aquat Sci. 40(2):192–199. doi: 10.1139/f83-029
  • Jones JR, Bachmann RW. 1976. Prediction of phosphorus and chlorophyll Levels in lakes. J Water Pollut Control Fed. 48(9):2176–2182.
  • Jones JR, Knowlton MF. 2005. Chlorophyll response to nutrients and non-algal seston in Missouri reservoirs and oxbow lakes. Lake Reserv Manage. 21(3):361–371. doi: 10.1080/07438140509354441
  • Jones JR, Obrecht DV, Perkins BD, Knowlton MF, Thorpe AP, Watanabe S, Bacon RR. 2008. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes: an analysis of regional limnology. Lake Reserv Manage. 24(2):155–180. doi: 10.1080/07438140809354058
  • Karl DM, Björkman KM. 2015. Chapter 5 - Dynamics of dissolved organic phosphorus. In: Hansell DA, Carlson CA, editors. Biogeochemistry of marine dissolved organic matter (2nd ed.). Boston (MA): Academic Press; p. 233–334.
  • Kasprzak P, Padisák J, Koschel R, Krienitz L, Gervais F. 2008. Chlorophyll a concentration across a trophic gradient of lakes: an estimator of phytoplankton biomass? Limnologica. 38(3–4):327–338. doi: 10.1016/j.limno.2008.07.002
  • Klausmeier CA, Litchman E, Daufresne T, Levin SA. 2004a. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature. 429(6988):171. doi: 10.1038/nature02454
  • Klausmeier CA, Litchman E, Levin SA. 2004b. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol Oceanogr. 49(4):1463–1470. doi: 10.4319/lo.2004.49.4_part_2.1463
  • Knowlton MF, Jones JR. 2000. Non-algal seston, light, nutrients and chlorophyll in Missouri reservoirs. Lake Reserv Manag. 16(4):322–332. doi: 10.1080/07438140009354239
  • Lewis WM, Wurtsbaugh WA. 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int Rev Hydrobiol. 93(4–5):446–465. doi: 10.1002/iroh.200811065
  • Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK, Levin SA, Lomas MW. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat Geosci. 6:279–283. doi: 10.1038/ngeo1757
  • Mazumder A. 1994. Phosphorus–chlorophyll relationships under contrasting herbivory and thermal stratification: predictions and patterns. Can J Fish Aquat Sci. 51(2):390–400. doi: 10.1139/f94-040
  • Perhar G, Arhonditsis GB. 2009. The effects of seston food quality on planktonic food web patterns. Ecol Model. 220(6):805–820. doi: 10.1016/j.ecolmodel.2008.12.019
  • Phillips G, Pietiläinen O-P, Carvalho L, Solimini A, Lyche Solheim A, Cardoso A. 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquat Ecol. 42(2):213–226. doi: 10.1007/s10452-008-9180-0
  • Pribyl DW. 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma. 156(3):75–83. doi: 10.1016/j.geoderma.2010.02.003
  • Ptacnik R, Andersen T, Tamminen T. 2010. Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems. 13(8):1201–1214. doi: 10.1007/s10021-010-9380-z
  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
  • Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci. 46(3):230A–221.
  • Solórzano L, Sharp JH. 2003. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr. 25(4):754–758. doi: 10.4319/lo.1980.25.4.0754
  • Stan Development Team. 2016. Stan modeling language users guide and reference manual, version 2.14.0. https://mc-stan.org
  • Sterner RW, Andersen T, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J. 2008. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnol Oceanogr. 53(3):1169–1180. doi: 10.4319/lo.2008.53.3.1169
  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH. 1997. The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat. 150(6):663–684. doi: 10.1086/286088
  • Sterner RW, Hessen DO. 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst. 25(1):1–29. doi: 10.1146/annurev.es.25.110194.000245
  • They NH, Amado AM, Cotner JB. 2017. Redfield ratios in inland waters: higher biological control of C:N:P ratios in tropical semi-arid high water residence time lakes. Front Microbiol. 8:1505.
  • Urabe J, Nakanishi M, Kawabata K. 2003. Contribution of metazoan plankton to the cycling of nitrogen and phosphorus in Lake Biwa. Limnol Oceanogr. 40(2):232–241. doi: 10.4319/lo.1995.40.2.0232
  • Urbansky ET. 2001. Total organic carbon analyzers as tools for measuring carbonaceous matter in natural waters. J Environ Monit. 3(1):102–112. doi: 10.1039/b006564l
  • [US EPA] US Environmental Protection Agency. 2010. National lakes assessment: a collaborative survey of the nation’s lakes. Washington (DC): Office of Water and Office of Research and Development Report No.: EPA 841-R-09-001.
  • [US EPA] US Environmental Protection Agency. 2012. 2012 National lakes assessment. laboratory operations manual. Washington (DC): Report No.: EPA-841-B-11-004.
  • [US EPA] US Environmental Protection Agency. 2017. National lakes assessment 2012: technical report. Washingon (DC): US EPA, Office of Water, Office of Research and Development Report No.: EPA 841-R-16-114.
  • Vitousek P, Howarth R. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry. 13:87–115. doi: 10.1007/BF00002772
  • Walling DE, Moorehead PW. 1989. The particle size characteristics of fluvial suspended sediment: an overview. Hydrobiology. 176-177:125–149. doi: 10.1007/BF00026549
  • Webster KE, Soranno PA, Cheruvelil KS, Bremigan MT, Downing JA, Vaux PD, Asplund TR, Bacon LC, Connor J. 2008. An empirical evaluation of the nutrient-color paradigm for lakes. Limnol Oceanogr. 53(3):1137–1148. doi: 10.4319/lo.2008.53.3.1137

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.