311
Views
9
CrossRef citations to date
0
Altmetric
Articles

Seasonal epilimnetic temperature patterns and trends in a suite of lakes from Wisconsin (USA), Germany, and Finland

, , , , , & ORCID Icon show all
Pages 471-488 | Received 13 Feb 2019, Accepted 26 Jun 2019, Published online: 11 Oct 2019

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, et al. 2009. Lakes as sentinels of climate change. Limnol Oceanogr. 54:2283–2297. doi: 10.4319/lo.2009.54.6_part_2.2283
  • Arnott SE, Keller B, Dillon PJ, Yan N, Paterson M, Findlay D. 2003. Using temporal coherence to determine the response to climate change in boreal shield lakes. Environ Monitor Assess. 88:365–388. doi: 10.1023/A:1025537628078
  • Benson BJ, Lenters JD, Magnuson JJ, Stubbs M, Kratz TK, Dillon PJ, Hecky RE, Lathrop RC. 2000. Regional coherence of climatic and lake thermal variables of four lake districts in the upper great lakes region of North America. Freshwater Biol. 43:517–527. doi: 10.1046/j.1365-2427.2000.00572.x
  • Blenckner T. 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia. 533:1–14. doi: 10.1007/s10750-004-1463-4
  • Blenckner T, Omstedt A, Rummukainen M. 2002. A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquat Sci. 64:171–184. doi: 10.1007/s00027-002-8065-x
  • Butcher JB, Nover D, Johnson TE, Clark CM. 2015. Sensitivity of lake thermal and mixing dynamics to climate change. Clim Change. 129:295–305. doi: 10.1007/s10584-015-1326-1
  • Chu C, Mandrak NE, Minns CK. 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity Distrib. 11:299–310. doi: 10.1111/j.1366-9516.2005.00153.x
  • Coats R, Perez-Losada J, Schladow G, Richards R, Goldman C. 2006. The warming of Lake Tahoe. Clim Change. 76:121–148. doi: 10.1007/s10584-005-9006-1
  • Comte L, Buisson L, Daufresne M, Grenouillet G. 2013. Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biol. 58:625–639. doi: 10.1111/fwb.12081
  • De Stasio BT Jr, Hill DK, Kleinhans JM, Nibbelink NP, Magnuson JJ. 1996. Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnol Oceanogr. 41:1136–1149. doi: 10.4319/lo.1996.41.5.1136
  • Foley B, Jones ID, Maberly SC, Rippey B. 2012. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biol. 57:278–289. doi: 10.1111/j.1365-2427.2011.02662.x
  • Fox J. 2005. The R Commander: a basic statistics graphical user interface to R. J Stat Softw. 14(9):1–42. doi: 10.18637/jss.v014.i09
  • George G, editor. 2010. The impact of climate change on European lakes. Springer, Dordrecht, Netherlands.
  • Graham CT, Harrod C. 2009. Implications of climate change for the fishes of the British Isles. J Fish Biol. 74:1143–1205. doi: 10.1111/j.1095-8649.2009.02180.x
  • Gray DK, Hampton SE, O’Reilly CM, Sharma S, Cohen RS. 2018. How do data collection and processing methods impact the accuracy of long-term trend estimation in lake surface-water temperatures? Limnol Oceanogr Methods. 16:504–515. doi: 10.1002/lom3.10262
  • Gronewold AD, Stow CA. 2014. Water loss from the Great Lakes. Science. 343:1084–1085. doi: 10.1126/science.1249978
  • Hondzo M, Stefan HG. 1993. Regional water temperature characteristics of lakes subjected to climate change. Clim Change. 24:187–211. doi: 10.1007/BF01091829
  • Hutchinson GE. 1957. A treatise on limnology. Vol. I, Part 1. Geography and physics of lakes. New York (NY): John Wiley & Sons.
  • [IPCC] Intergovernmental Panel On Climate Change. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel On Climate Change [Core Writing Team, Pachauri RK, Meyer LA, editors]. Geneva (Switzerland): IPCC. 151 p.
  • [IPCC] Intergovernmental Panel On Climate Change. 2018. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, et al., editors. Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva (Switzerland): World Meteorological Organization. 616 p.
  • Jeppesen E, Mehner T, Winfield IJ, Kangur K, Sarvala J, Gerdeaux D, Rask M, Malmquist HJ, Holmgren K, Volta P, et al. 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia. 694:1–39. doi: 10.1007/s10750-012-1182-1
  • Keller W. 2007. Implications of climate warming for boreal shield lakes: a review and synthesis. Environ Rev. 15:99–112. doi: 10.1139/A07-002
  • Kirillin G, Shatwell T, Kasprzak P. 2013. Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. J Hydrol. 496:47–56. doi: 10.1016/j.jhydrol.2013.05.023
  • Kosten S, Huszar VLM, Bécares E, Costa LS, Van Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, et al. 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biol. 18:118–126. doi: 10.1111/j.1365-2486.2011.02488.x
  • Lathrop RC, Carpenter SR, Rudstam LG. 1996. Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory. Can J Fish Aquat Sci. 53:2250–2261. doi: 10.1139/f96-187
  • Lathrop RC, Johnson BM, Johnson TB, Vogelsang MT, Carpenter SR, Hrabik TR, Kitchell JF, Magnuson JJ, Rudstam LG, Stewart RS. 2002. Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation project. Freshwat Biol. 47:2410–2424. doi: 10.1046/j.1365-2427.2002.01011.x
  • Livingstone DM. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Change. 57:205–225. doi: 10.1023/A:1022119503144
  • Livingstone DM, Dokulil MT. 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnol Oceanogr. 46:1220–1227. doi: 10.4319/lo.2001.46.5.1220
  • Livingstone DM, Lotter AF. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palæolimnological implications. J Paleolimnol. 19:181–198. doi: 10.1023/A:1007904817619
  • Magee MR, Wu CH, Robertson DM, Lathrop RC, Hamilton DP. 2016. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrol Earth Syst Sci. 20:1681–1702. doi: 10.5194/hess-20-1681-2016
  • Magnuson JJ, Benson BJ, Kratz TK. 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin, U.S.A. Freshwater Biol. 23:145–159. doi: 10.1111/j.1365-2427.1990.tb00259.x
  • Magnuson JJ, Webster KE, Assel RA, Bowser CJ, Dillon PJ, Eaton JG, Evans HE, Fee EJ, Hall RI, Mortsch LR, et al. 1997. Potential effects of climate changes on aquatic systems: Laurentian great lakes and Precambrian shield region. Hydrol Processes. 11:825–871. doi: 10.1002/(SICI)1099-1085(19970630)11:8<825::AID-HYP509>3.0.CO;2-G
  • Medhaug I, Stolpe MB, Fischer EM, Knutti R. 2017. Reconciling controversies about the ‘global warming hiatus’. Nature. 545:41–47. doi: 10.1038/nature22315
  • [NCAR] National Center for Atmospheric Research. 2014. The climate data guide: trend analysis. National Center for Atmospheric Research. https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/trend-analysis
  • [NOAA] National Oceanic and Atmospheric Administration. 2017. National centers for environmental information, climate at a glance: global time series. National Center for Atmospheric Research. Published March 2017; [accessed 2017 March 27]. http:www.ncdc.noaa.gov/cag/
  • North RP, North RL, Livingstone DM, Köster O, Kipfer R. 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Global Change Biol. 20:811–823. doi: 10.1111/gcb.12371
  • O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 42:1–9. doi: 10.1002/2014GL062453
  • Paerl HW, Huisman J. 2008. Climate: blooms like it hot. Science. 320:57–58. doi: 10.1126/science.1155398
  • Parker DE, Wilson H, Jones PD, Cristy JR, Folland CK. 1996. The impact of Mount Pinatubo on world-wide temperatures. Int J Climat. 16:487–497. doi: 10.1002/(SICI)1097-0088(199605)16:5<487::AID-JOC39>3.0.CO;2-J
  • Piccolroaz S. 2016. Prediction of lake surface temperature using the air2water model: guidelines, challenges, and future perspectives. Adv Oceanogr Limnol. 7:36–50. doi: 10.4081/aiol.2016.5791
  • Piccolroaz S, Healey NC, Lenters JD, Schladow SG, Hook SJ, Sahoo GB, Toffolon M. 2018. On the predictability of lake surface temperature using air temperature in a changing climate: a case study for Lake Tahoe (U.S.A.). Limnol Oceanogr. 63:243–261. doi: 10.1002/lno.10626
  • R Core Team. 2013. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org/
  • Robertson DM. 1989. The use of lake water temperature and ice cover as climatic indicators [dissertation]. Madison (WI, USA): University of Wisconsin-Madison.
  • Robertson DM, Ragotzkie RA. 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat Sci. 52:360–380. doi: 10.1007/BF00879763
  • Self S, Zhao J-X, Holasek RE, Torres RC, King AJ. 1996. The atmospheric impact of the 1991 Mount Pinatubo eruption. In: Newhall CG, Punongbayan RS, editors. Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Seattle (WA): Philippine Institute of Volcanology and Seismology, Quezon City, Philippines, and University of Washington Press; http://pubs.usgs.gov/Pinatubo
  • Sharma S, Gray DK, Read JS, O’Reilly CM, Schneider P, Qudrat A, Gries C, Stefanoff S, Hampton SE, Hook S, Lenters JD, et al. 2015. A global data base of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data. 2:150008-1-150008-19. doi: 10.1038/sdata.2015.8
  • Spence C, Blanken PD, Lenters JD, Hedstrom N. 2013. The importance of spring and autumn atmospheric conditions for the evaporation regime of lake superior. J Hydrometeorol. 14:1647–1658. doi: 10.1175/JHM-D-12-0170.1
  • Toffolon M, Piccolroaz S, Majone B, Soja A-M, Peeters F, Schmid M, Wüest A. 2014. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol Oceanogr. 59:2185–2202. doi: 10.4319/lo.2014.59.6.2185
  • Wagner C, Adrian R. 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr. 54:2460–2468. doi: 10.4319/lo.2009.54.6_part_2.2460
  • Wild M. 2009. Global dimming and brightening: a review. J Geophys Res. 114:D00D16. doi: 10.1029/2008JD011470
  • Wild M. 2016. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. WIRES Clim Change. 7:91–107. doi: 10.1002/wcc.372
  • Winslow LA, Leach TH, Rose KC. 2018. Global lake response to the recent warming hiatus. Environ Res Lett. 13:054005. doi: 10.1088/1748-9326/aab9d7
  • Winslow LA, Read JS, Hansen GJA, Rose KC, Robertson DM. 2017. Seasonality of change: summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol Oceanogr. 62:2168–2178. doi: 10.1002/lno.10557
  • Woodward G, Perkins DM, Brown LE. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil Trans R Soc B. 365:2093–2106. doi: 10.1098/rstb.2010.0055
  • Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ. 2017. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Change. 142:505–520. doi: 10.1007/s10584-017-1966-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.