230
Views
3
CrossRef citations to date
0
Altmetric
Special Section: Water Level Fluctuations

Spatiotemporal patterns of cladoceran community responses to water level variation in Haixi Lake, southwest China

, , , , & ORCID Icon
Pages 267-282 | Received 04 Mar 2019, Accepted 17 Sep 2019, Published online: 02 Jan 2020

References

  • Abrahams C. 2008. Climate change and lakeshore conservation: a model and review of management techniques. Hydrobiologia. 613:33–43.
  • Alexander ML, Hotchkiss SC. 2010. Bosmina remains in lake sediment as indicators of zooplankton community composition. J Paleolimnol. 43(1):51–59.
  • Alric B, Jenny JP, Berthon V, Arnaud F, Pignol C, Reyss JL, Sabatier P, Perga ME. 2013. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology. 94:2767–2780.
  • Amsinck SL, Jeppesen E, Landkildchus F. 2005. Relationships between environmental variables and zooplankton subfossils in the surface sediments of 36 shallow coastal brackish lakes with special emphasis on the role of fish. J Paleolimnol. 33:39–51.
  • Amsinck SL, Strzelczak AS, Bjerring R, Landkildehus F, Lauridsen TL, Christoffersen K, Jeppsesn E. 2006. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes – evidence from contemporary data and sediments. Freshw Biol. 51(11):2124–2142.
  • Appleby PG. 2001. Chronostratigraphic techniques in recent sediments. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K, editors. Tracking environmental change using lake sediments. Dordrecht (Netherlands): Kluwer Academic Publisher; p. 171–203.
  • Aroviita J, Hämäläinen H. 2008. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia. 613:45–56.
  • Barnett AJ, Finlay K, Beisner BE. 2007. Functional diversity of crustacean zooplankton communities: towards a traitbased classification. Freshw Biol. 52:796–813.
  • Battarbee RW, Kernan M, Rose N. 2009. Threatened and stressed mountain lakes of Europe: assessment and progress. Aquat Ecosyst Health Manag. 12(2):118–128.
  • Bednarek AL. 2001. Undamming rivers: a review of the ecological impacts of dam removal. Environ Manage. 27:803–814.
  • Beklioglu M, Romo S, Kagalou I, Quintana X, Becares E. 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia. 584:317–326.
  • Bennett KD. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132(1):155–170.
  • Bindow I, Hargeby A, Wagner MA, Anderson G. 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshw Biol. 44:185–197.
  • Bond NR, Lake PS, Arthington AH. 2008. The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia. 600:3–16.
  • Borcard D, Gillet F, Legendre P. 2011. Numerical ecology with R. Berlin (Germany): Springer.
  • Brucet S, Boix D, Gascón S, Sala J, Quintana XD, Badosa A, Søndergaard M, Lauridsen TL, Jeppesen E. 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography. 32:692–702.
  • Burks RL, Jeppesen E, Lodge DM. 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnol Oceanogr. 46:230–237.
  • Chase JM, Leibold MA. 2002. Spatial scale dictates the productivity-biodiversity relationship. Nature. 416:427–430.
  • Chen G, Dalton C, Taylor D. 2010. Cladocera as indicators of trophic state in Irish lakes. J Paleolimnol. 44:465–481.
  • Chen X, McGowan S, Xu L, Zeng L, Yang X. 2016. Effects of hydrological regulation and anthropogenic pollutants on Dongting Lake in the Yangtze floodplain. Ecohydrology. 9:315–325.
  • Coops H, Beklioglu M, Crisman TL. 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia. 506–509(1–3):23–27.
  • Davidson TA, Sayer CD, Perrow MR, Bramm M, Jeppesen E. 2007. Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J Paleolimnol. 38:117–134.
  • de Bernardi R, Giussani G, Manca M. 1987. Cladocera: predators and prey. Hydrobiologia. 145:225–243.
  • de Eyto E, Irvine K. 2001. The response of three chydorid species to temperature, pH and food. Hydrobiogia. 459:165–172.
  • DeMott WR. 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol Oceanogr. 27:518–527.
  • DeSellas AM, Paterson AM, Sweetman JN, Smol JP. 2008. Cladocera assemblages from the surface sediments of south-central Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia. 600:105–119.
  • Dodson SI. 1992. Predicting crustacean zooplankton species richness. Limnol Oceanogr. 37:848–856.
  • Duigan CA, Birks HH. 2000. The late-glacial and early-Holocence palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quatitative reconstruction of cladoceran. J Paleolimnol. 23:67–76.
  • Eggermont H, Martens K. 2011. Preface: Cladocera crustaceans: sentinels of environmental change. Hydrobiologia. 676:1–7.
  • Forsberg BR, Devol AH, Richey JE, Martinelli LA, Santos HD. 1988. Factors controlling nutrient concentrations in Amazon floodplain lakes. Limnol Oceanogr. 33(1):41–56.
  • Frey DG. 1986. Cladocera analysis. In: Berglund BE, editor. Handbook of Holocene palaeoecology and palaeohydrology. New York (NY): Wiley; p. 667–692.
  • Frey DG. 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J Paleolimnol. 6:193–197.
  • Gal G, Anderson W. 2010. A novel approach to detecting a regime shift in a lake ecosystem. Methods Ecol Evol. 1:45–52.
  • Gasiorowski M, Szeroczynska K. 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite Lake (northern Poland). Hydrobiogia. 526:137–144.
  • Grimm EC. 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci. 13:13–35.
  • Hofmann W. 1978. Analysis of animal microfossils from the Groβer Segeberger (FRG). Arch Hydrobiol. 82:316–346.
  • Hofmann W. 1987. Cladocera in space and time: analysis of lake sediments. Hydrobiologia. 145:315–321.
  • Hofmann W. 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia. 318:195–201.
  • Howard-Williams C, Schwarz AM, Vincent WF. 1995. Deep-water aquatic plant communities in an oligotrophic lake: physiological responses to variable light. Freshw Biol. 33(1):91–102.
  • Huang W, Jiang X. 2016. Profiling of sediment microbial community in Dongting Lake before and after impoundment of the Three Gorges Dam. Int J Environ Res Public Health. 13(6):617–632.
  • Hulme PE. 2005. Adapting to climate change: Is there scope for ecological management in the face of a global threat? J Appl Ecol. 42(5):784–794.
  • Irvine K, Moss B, Balls H. 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshw Biol. 22(1):89–107.
  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L.1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia. 342/343:151–164.
  • Jeppsen E, Leavitt P, De Meester L, Jensen JP. 2001. Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol. 16:191–198.
  • Jeppesen E, Madsen EA, Jensen JP, Anderson NJ. 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshw Biol. 36:115–127.
  • Jiang X, Du N. 1979. Fauna Sinica: freshwater Cladocera. Beijing (China): Science Press.
  • Kamenik C, Szeroczyńska K, Schmidt R. 2007. Relationships among recent alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia. 594:33–46.
  • Kattel GR, Battarbee RW, Mackay A, Birks HJB. 2007. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? J Paleolimnol. 38(2):157–181.
  • Kattel GR, Dong X, Yang X. 2016. A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze). Hydrol Earth Syst Sci. 20:2151–2168.
  • Kerfoot WC. 1977. Implications of copepod predation. Limnol Oceanogr. 22(2):316–325.
  • Korhola A. 1992. The early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. J Paleolimnol. 7:1–22.
  • Korhola A. 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography. 22(4):357–373.
  • Korhola A, Olander H, Blom T. 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J Paleolimnol. 24:43–54.
  • Korhola A, Rautio M. 2001. Cladocera and other branchipod crustaceans. In: Smol JP, Birks HJB, Last WM, editors. Tracking environmental change using lake sediments: zoological indicators. Vol. 4. Dordrecht (Netherlands): Kluwer; p. 5–41.
  • Korhola A, Tikkanen M, Weckström J. 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a Cladocera–lake depth transfer model. J Paleolimnol. 34:175–190.
  • Korosi JB, Kurek J, Smol JP. 2013. A review on utilizing Bosmina size structure archived in lake sediments to infer historic shifts in predation regimes. J Plankton Res. 35(2):444–460.
  • Korosi JB, Smol JP. 2011. Distribution of cladoceran assemblages across environmental gradients in Nova Scotia (Canada) lakes. Hydrobiologia. 663:83–99.
  • Korosi JB, Thienpont JR, Pisaric MFJ, deMotigny P, Perreault JT, McDonald J, Simpson MJ, Armstrong T, Kokelj SV, Smol JP, et al. 2017. Broad-scale lake expansion and flooding inundates essential wood bison habitat. Nat Commun. 8:14510.
  • Lauridsen T, Jeppesen E, Landklidehus F, Søndergaard M. 2001. Horizontal distribution of cladocerans in Arctic Greenland’s lakes – impact of macrophytes and fish. Hydrobiologia. 442:107–116.
  • Leira M, Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia. 36(1):291–297.
  • Liu Y, Chen G, Hu K, Shi H, Huang L, Chen X, Lu H, Zhao S, Chen L. 2017. Biological responses to recent eutrophication and hydrologic changes in Xingyun Lake, southwest China. J Paleolimnol. 57:343–360.
  • Lotter AF, Birks HJB, Hofmann W, Marchetto A. 1997. Modern diatom, Cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. J Paleolimnol. 18:395–420.
  • Marinone MC, Marque SM, Suárez DA, Dieguez M, Pérez P, Ríos PDL, Soto D, Zagarese HE. 2006. UV radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochem Photobiol. 82(4):962–971.
  • Meyers PA, Teranes JL, Last WM, Smol JP. 2001. Sediment organic matter. In: WM Last, JP Smol, editors. Tracking environmental change using lake sediments. Boston: Kluwer Academic; p. 239–269.
  • Middelboe AL, Markager S. 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol. 37(3):553–568.
  • Müeller WP. 1964. The distribution of cladoceran remains in surficial sediments from three northern Indiana lakes. Invest Ind Lakes Streams. 6:1–63.
  • Nevalainen L, Luoto TP, Kultti S, Sarmaja-Korjonen K. 2013. Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. J Biogeogr. 40:1548–1559.
  • Nevalainen L, Sarmaja-Korjonen K, Luoto TP. 2011. Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quat Res. 75:430–437.
  • Ni Z, Wang S, Zhang L, Wu Z. 2015. Role of hydrological conditions on organic phosphorus forms and their availability in sediments from Poyang Lake, China. Environ Sci Pollut Res. 22:10116–10129.
  • Noges P, Mischke U, Laugaste R, Solimini AG. 2010. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiogia. 646(1):33–48.
  • O’Brien WJ, Barfield M, Bettez ND, Gettel GM, Hershey AE, McDonald ME, Miller MC, Mooers H, Pastor J, Richards C, et al. 2004. Physical, chemical, and biotic effects on Arctic zooplankton communities and diversity. Limnol Oceanogr. 49(4):1250–1261.
  • Ormerod SJ, Dobson M, Hildrew AG, Townsend CR. 2010. Multiple stressors in freshwater ecosystems. Freshw Biol. 55(S1):1–4.
  • Poff NL, Zimmerman JKH. 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol. 55:194–205.
  • Roelke DL, Zohary T, Hambright KD, Montoya JV. 2007. Alternative states in the phytoplankton of Lake Kinneret, Israel (Sea of Galilee). Freshw Biol. 52:399–411.
  • Sakuma M, Hanazato T, Saji A, Nakazato R. 2004. Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology. 5(1):17–23.
  • Sarmaja-Korjonen K. 2003. Chydoid ephippia as indicators of environmental change biostratigraphical evidence from two lakes in southern Finland. Holocene. 13:691–700.
  • Sarmaja-Korjonen K, Alohonen P. 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. J Paleolimnol. 22:277–290.
  • Schmidt D, O’Brien WJ. 1982. Planktivorous feeding ecology of Arctic grayling (Thymallus arcticus). Can J Fish Aquat Sci. 39:475–482.
  • Shi H, Chen G, Lu H, Wang J, Huang L, Wang L, Zhao S, Liu X. 2016. Regional pattern of Bosmina responses to fish introduction and eutrophication in four large lakes from southwest China. J Plankton Res. 38(3):443–455.
  • [SEPA] State Environmental Protection Administration. 2002. Water and exhausted water monitoring analysis method. Beijing (China): China Environmental Science Press. Chinese.
  • Sweetman JN, Smol JP. 2006. Patterns in the distribution of cladocerans (Crustacea: Branchiopoda) in lakes across a north–south transect in Alaska, USA. Hydrobiologia. 553:227–291.
  • Szeroczyńska K, Sarmaja-Korjonen K. 2007. Atlas of subfossil cladoceran from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie (Poland).
  • Tremel B, Frey SL, Yan ND, Somers KM, Pawson TW. 2000. Habitat specificity of littoral Chydoridae (Crustacea, Branchiopoda, Anomopoda) in Plastic Lake, Ontario. Canada. Hydrobiologia. 432:195–205.
  • Tsugeki N, Oda H, Urabe J. 2003. Fluctuation of the zooplankton community in Lake Biwa during the 20th century: a paleolimnological analysis. Limnology. 4:101–107.
  • Van Geest GJ, Wolters H, Roozen FCJM, Coops H, Roijackers RMM, Buijse AD, Scheffer M. 2005. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia. 539:239–248.
  • Verschuren D, Tibby J, Sabbe K, Roberts N. 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology. 81:164–182.
  • Viana DS, Santamaria L, Schwenk K, Manca M, Hobaek A, Mjelde M, Preston CD, Gornall RJ, Croft JM, King RA, et al. 2014. Environment and biogeography drive aquatic plant and cladoceran species richness across Europe. Freshw Biol. 59:2096–2106.
  • Walseng B, Yan ND, Pawson T, Skarpaas O. 2008. Acidity versus habitat structure as regulators of littoral microcrustacean assemblages. Freshw Biol. 53:290–303.
  • Wang F, Maberly S, Wang B, Liang X. 2018a. Effects of dams on riverine biogeochemical cycling and ecology. Inland Waters. 8(2):130–140.
  • Wang J, Chen G, Kang W, Hu K, Chen X, Wu F, Zhu Q, Feng Z, Liang H. 2018b. Spatial distributions and environmental control of diatom functional groups in sediments of Haixi Lake, southwest China. Chi J Appl Ecol. 29(9):3120–3130. Chinese.
  • Wang J, Chen G, Kang W, Hu K, Wang L. 2019. Impoundment intensity determines temporal patterns of hydrological fluctuation, carbon cycling and algal succession in a dammed lake of southwest China. Water Res. 148:162–175.
  • Wang Q, Yang X, Kattel GR. 2018c. Within-lake spatio-temporal dynamics of cladoceran and diatom communities in a deep subtropical mountain lake (Lugu Lake) in southwest China. Hydrobiologia. 820:91–113.
  • Wantzen KM, Rothhaupt KO, Mörtl M, Cantonati M, Tóth LG, Fischer P. 2008. Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia. 613(1):1–4.
  • [WABD] Water Affairs Bureau of Dili. 2012. Water conservancy history of Dali Bai autonomous prefecture. Kunming (China): Yunnan Science and Technology Press. Chinese.
  • Wetzel RG. 2001. Limnology: lake and river ecosystems. Cambridge (MA): Academic Press.
  • Wetzel RG, Likens GE. 2000. Limnological analyses. 3rd ed. New York (NY): Springer Verlag.
  • White MS, Xenopoulos MA, Hogsden K, Metcalfe RA, Dillon PJ. 2008. Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region. Hydrobiologia. 613:21–31.
  • Whiteside MC. 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecol Monogr. 40:79–118.
  • Whiteside MC, Harmsworth RV. 1967. Species diversity in Chydorid (Cladocera) communities. Ecology. 48:664–667.
  • Whiteside MC, Williams JB, White CP. 1978. Seasonal abundance and pattern of chydorid, Caldocera in mud and vegetative habitats. Ecology. 59:1177–1188.
  • Williamson CE, Olson OG, Lott SE, Walker ND, Engstrom DR, Hargreaves BR. 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology. 82:1748–1760.
  • Yang G. 1996. Eryuan County annals. Kunming (China): Yunnan People’s Publishing House. Chinese.
  • Zaret TM, Kerfoot WC. 1975. Fish predation on Bosmina longirostris: body-size selection versus visibility selection. Ecology. 56:232–237.
  • Zaret TM, Suffern JS. 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr. 21:804–813.
  • Zhang Q, Dong X, Chen Y, Yang X, Xu M, Davidson TA, Jeppesen E. 2018. Hydrological alterations as the major driver on environmental change in a floodplain Lake Poyang (China): evidence from monitoring and sediment records. J Great Lakes Res. 44(3):377–387.
  • Zhao Y, Xia X, Yang Z. 2013. Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake. J Environ Sci. 25(1):16–25.
  • Zohary T, Ostrovsky I. 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters. 1:47–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.