249
Views
6
CrossRef citations to date
0
Altmetric
Articles

Responses of morphology-based phytoplankton functional groups to spatial variation in two tropical reservoirs with long water-residence time

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 29-43 | Received 16 Jun 2019, Accepted 16 Mar 2020, Published online: 02 Jul 2020

References

  • Aguilera A, Berrendero Gómez E, Kastovsky J, Echenique RO, Salerno GL. 2018. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia. 57(2):130–146. doi: 10.2216/17-2.1
  • Allende L, Fontanarrosa MS, Murno A, Sinistro R. 2019. Phytoplankton functional group classifications as a tool for biomonitoring shallow lakes: a case study. Knowl Manag Aquat Ecosyst. 420:5. doi: 10.1051/kmae/2018044
  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorol Z. 22:711–728. doi: 10.1127/0941-2948/2013/0507
  • [APHA] American Public Health Association. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington (DC): American Public Health Association.
  • Armengol J, Garcia JC, Comerma M, Romero M, Dolz J, Roura M, Han BH, Vidal A, Simek K. 1999. Longitudinal processes in canyon type reservoirs: the case of Sau (N.E. Spain). In: Tundisi JG, Straškraba M, editors. Theoretical reservoir ecology and its applications. International Institute of Ecology, Brazilian Academy of Sciences. Leiden (Netherlands): Backhuys; p. 313–345.
  • Attayde JL, Hansson LA. 2001. Fish-mediated nutrient recycling and the trophic cascade in lakes. Can J Fish Aquat Sci. 58:1924–1931. doi: 10.1139/f01-128
  • Beaver JR, Casamatta DA, East TL, Havens KE, Rodusky AJ, James RT, Tausz CE, Buccier KM. 2013. Extreme weather events influence the phytoplankton community structure in a large lowland subtropical lake (Lake Okeechobee, Florida, USA). Hydrobiologia. 709:213–226. doi: 10.1007/s10750-013-1451-7
  • Beaver JR, Scotese KC, Manis EE, Juul STJ, Carroll J, Renicker TR. 2015. Variation in water residence time is the primary determinant of phytoplankton and zooplankton composition in a Pacific Northwest reservoir ecosystem (Lower Snake River, USA). River Systems. 21:241–255. doi: 10.1127/rs/2015/0100
  • Bohnenberger J, Rodrigues LR, da Motta-Marques D, Crossetti LO. 2017. Environmental dissimilarity over time in a large subtropical shallow lake is differently represented by phytoplankton functional approaches. Mar Freshwater Res. 69:95–104. doi: 10.1071/MF16417
  • Bouvy M, Pagano M, Troussellier M. 2001. Effects of a cyanobacterial bloom Cylindrospermopsis raciborskii on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil). Aquat Microb Ecol. 25:215–227. doi: 10.3354/ame025215
  • Branco CWC, Senna PAC. 1994. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá Reservoir, Brasilia, Brazil. Arch Hydrobiol Alg Stud. 75:85–96.
  • Briand JF, Robillot C, Quiblier-Lloberas C, Humbert JF, Couté A, Bernard C. 2002. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res. 36:3183–3192. doi: 10.1016/S0043-1354(02)00016-7
  • Caraco N, Miller R. 1998. Direct and indirect effects of CO2 on competition between a cyanobacteria and eukaryotic phytoplankton. Can J Fish Aquat Sci. 55:54–62. doi: 10.1139/f97-202
  • Chen N, Liu L, Li Y, Qiao D, Li Y, Zhang YF, Lv Y. 2015. Morphology-based classification of functional groups for potamoplankton. J Limnol. 74(3):559–571.
  • Cole GA. 1994. Textbook of limnology. Prospect Heights (IL): Waveland Press.
  • Colina M, Calliari D, Carballo C, Kruk C. 2016. A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters. Hydrobiologia. 767:221–233. doi: 10.1007/s10750-015-2503-y
  • [CEMIG] Companhia Energética de Minas Gerais. 2009. Usinas da CEMIG [accessed 2014 Apr 13]. http://www.cemig.com.br/institucional/usinas/11g.asp
  • Crumpton WG, Isenhart TM, Mitchell PD. 1992. Nitrate and organic N analysis using second-derivative spectroscopy. Limnol Oceanogr. 37:907–913. doi: 10.4319/lo.1992.37.4.0907
  • Culver DA, Boucherle MM, Bean DJ, Fletcher JW. 1985. Biomass of freshwater crustacean zooplankton from length-weight regressions. Can J Fish Aquat Sci. 42:1380–1390. doi: 10.1139/f85-173
  • Devercelli M, O’Farrell I. 2013. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica. 43:67–78. doi: 10.1016/j.limno.2012.05.001
  • Domingues CD, Silva LHS, Rangel L, de Magalhães L, Melo Rocha A, Lobão L M, Paiva R, Roland F, Sarmento H. 2017. Microbial food-web drivers in tropical reservoirs. Microb Ecol. 73:505–520. doi: 10.1007/s00248-016-0899-1
  • Doubek JP, Carey CC, Lavender M, Winegardner AK, Beaulieu M, Kelly PT. 2019. Calanoid copepod zooplankton density is positively associated with water residence time across the continental United States. PLoS ONE. 14(1):e0209567. doi: 10.1371/journal.pone.0209567
  • Dubourg P, North RL, Hunter K, Vandergucht D, Abirhire O, Silsbe GM, Guildford SJ, Hudson JJ. 2015. Light and nutrient co-limitation of phytoplankton communities in a large reservoir: Lake Diefenbaker, Saskatchewan, Canada. J Great Lakes Res. 41(Suppl 2):129–143. doi: 10.1016/j.jglr.2015.10.001
  • Engström-Öst J, Viitasalo M, Jónasdóttir S, Repka S, Sivonen K, Koski M, Schmidt K. 2002. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr. 47:878–885. doi: 10.4319/lo.2002.47.3.0878
  • Fermani P, Diovisalvi N, Torremorell A, Lagomarsino L, Zagarese H, Unrein F. 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia. 714:115–130. doi: 10.1007/s10750-013-1528-3
  • [FURNAS] Furnas Centrais Elétricas. 2014. Usina Hidrelétrica Serra da Mesa [accessed 2014 Apr 20]. http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_serramesa.asp
  • Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O, Wilson AE, Lürling M. 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae. 54:128–144. doi: 10.1016/j.hal.2015.12.005
  • Guildford SJ, Hecky RE. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnol Oceanogr. 45:1213–1223. doi: 10.4319/lo.2000.45.6.1213
  • Hennemann MC, Petrucio MM. 2011. Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environ Monit Assess. 181:347–361. doi: 10.1007/s10661-010-1833-5
  • Hillebrand H, Dürselen C, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x
  • Holland DP, Pantorno A, Orr PT, Stojkovic S, Beardall J. 2012. The impacts of a high CO2 environment on a bicarbonate user: the cyanobacterium Cylindrospermopsis raciborskii. Water Res. 46:1430–1437. doi: 10.1016/j.watres.2011.11.015
  • Hong Y, Burford MA, Ralph PJ, Udy JW, Doblin MA. 2013. The cyanobacterium Cylindrospermopsis raciborskii is facilitated by copepod selective grazing. Harmful Algae. 29:14–21. doi: 10.1016/j.hal.2013.07.003
  • Hu R, Han B, Naselli-Flores L. 2013. Comparing biological classifications of freshwater phytoplankton: a case study from South China. Hydrobiologia. 701:219–233. doi: 10.1007/s10750-012-1277-8
  • Hu WP, Jorgensen SE, Zhang FB. 2006. A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecol Model. 190:367–398. doi: 10.1016/j.ecolmodel.2005.02.024
  • Istvánovics V, Shafik HM, Préssing M, Juhos S. 2000. Growth and phosphate uptake kinetics of the cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) in a throughflow cultures. Freshwater Biol. 43:257–275. doi: 10.1046/j.1365-2427.2000.00549.x
  • Izaguirre I, Allende L, Escaray R, Bustingorry J, Pérez G, Tell G. 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia. 698:203–216. doi: 10.1007/s10750-012-1069-1
  • Josué IIP, Cardoso SJ, Miranda M, Mucci M, Ger KA, Roland F, Marinho MM. 2019. Cyanobacteria dominance drives zooplankton functional dispersion. Hydrobiologia. 831:149–161. doi: 10.1007/s10750-018-3710-0
  • Karadžić V, Simić GS, Natić D, Ržaničanin A, Ćirić M, Gačić Z. 2013. Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia. 711:43–60. doi: 10.1007/s10750-013-1460-6
  • Kruk C, Devercelli M, Huszar VLM, Hernández E, Beamud G, Diaz M, Silva LHS, Segura AM. 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biol. 62(10):1681–1692. doi: 10.1111/fwb.12968
  • Kruk C, Huszar VLM, Peeters ETHM, Bonilla S, Costa LS, Lürling M, Reynolds C, Scheffer M. 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biol. 55:614–627. doi: 10.1111/j.1365-2427.2009.02298.x
  • Kruk C, Peeters ETHM, Van Nes EH, Huszar VLM, Costa LS, Scheffer M. 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol Oceanogr. 56:110–118. doi: 10.4319/lo.2011.56.1.0110
  • Kruk C, Segura AM. 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia. 698:191–202. doi: 10.1007/s10750-012-1072-6
  • Lacerot, G. 2010. Effects of climate on size structure and functioning of aquatic food webs [dissertation]. Wageningen (Netherlands): Wageningen University.
  • Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett. 10:1170–1181. doi: 10.1111/j.1461-0248.2007.01117.x
  • Lobo MTMPS, De Souza Nogueira I, Sgarbi LF, Kraus CN, De Oliveira Bomfim E, Garnier J, David MM, Bonnet MP. 2018. Morphology-based functional groups as the best tool to characterize shallow lake-dwelling phytoplankton on an Amazonian floodplain. Ecol Indic. 95:579–588. doi: 10.1016/j.ecolind.2018.07.038
  • Londe LR, Novo EMLM, Barbosa C, Araujo CAS. 2016. Water residence time affecting phytoplankton blooms: study case in Ibitinga reservoir (São Paulo, Brazil) using Landsat/TM images. Braz J Biol. 76:664–672. doi: 10.1590/1519-6984.23814
  • Lund JWG, Kipling C, Le Cren ED. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia. 11:143–170. doi: 10.1007/BF00007865
  • Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM. 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol. 58:552–559. doi: 10.1111/j.1365-2427.2012.02866.x
  • Mackereth FJH, Heron J, Talling JF. 1978. Water analysis: some revised methods for limnologists. Ambleside (UK): Freshwater Biological Association, Scientific Publication 36.
  • Matveev V. 2003. Testing predictions of the lake food web theory on pelagic communities of Australian reservoirs. Oikos. 100:149–161. doi: 10.1034/j.1600-0706.2003.11651.x
  • Mehnert G, Leunert F, Cirés S, Jöhnk K, Rücker J, Nixdorf B, Wiedner C. 2010. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. J Plankton Res. 32:1009–1021. doi: 10.1093/plankt/fbq033
  • Mieleitner J, Borsuk M, Bürgi HR, Reichert P. 2008. Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquat Sci. 70:30–46. doi: 10.1007/s00027-007-0940-z
  • Mihaljević M, Špoljarić D, Stević F, Žuna Pfeiffer T. 2013. Assessment of flood-induced changes of phytoplankton along a river–floodplain system using the morpho-functional approach. Environ Monit Assess. 621:1–19.
  • Nürnberg GK. 1996. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv Manage. 12:432–447. doi: 10.1080/07438149609354283
  • Pacheco FS, Soares MCS, Assireu AT, Curtarelli MP, Abril G, Stech JL, Alvalá PC, Ometto JP. 2015. The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water–air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences. 12:147–162. doi: 10.5194/bg-12-147-2015
  • Pacheco JP, Iglesias C, Meerhoff M, Fosalba C, Goyenola G, De Mello TF. 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology-based approach. Hydrobiologia. 646:187–197. doi: 10.1007/s10750-010-0180-4
  • Padisák JL, Crossetti O, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia. 621:1–19. doi: 10.1007/s10750-008-9645-0
  • Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ, Newell SE, Qin B, Scott JT. 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae. 54:213–222. doi: 10.1016/j.hal.2015.09.009
  • Paerl HW, Huisman J. 2008. Climate. Blooms like it hot. Science. 320:57–58. doi: 10.1126/science.1155398
  • Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol. 1:27–37.
  • Paerl HW, Otten TG. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Environ Microbiol. 65:995–1010.
  • Payne AI. 1986. The ecology of tropical rivers and reservoirs. Chichester (UK): John Wiley.
  • Pinto-Coelho RM. 2007. Relatório de Estudos Ambientais e Regularização do Parque Aqüícola São Francisco, Reservatório de Três Marias [Report on environmental studies and regularization of the São Francisco aquaculture, Três Marias Reservoir]. Projeto Parques Aqüícolas. Belo Horizonte: Sectes/Seap/UFMG.
  • Rangel LM, Ger KA, Silva LHS, Soares MCS, Faassen EJ, Lürling M. 2016b. Toxicity overrides morphology on Cylindrospermopsis raciborskii grazing resistance to the calanoid Copepod Eudiaptomus gracilis. Microb Ecol. 71:835–844. doi: 10.1007/s00248-016-0734-8
  • Rangel LM, Silva LHS, Rosa P, Roland F, Huszar VLM. 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia. 693:13–28. doi: 10.1007/s10750-012-1083-3
  • Rangel LM, Soares MC, Paiva R, Silva LHS. 2016a. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecol Indic. 64:217–227. doi: 10.1016/j.ecolind.2015.12.041
  • Reynolds CS. 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf/Luhe: Ecology Institute.
  • Reynolds CS. 1999. Phytoplankton assemblages in reservoirs. In: Tundisi JG, Straškraba M, editors. Theoretical reservoir ecology and its applications. International Institute of Ecology, Brazilian Academy of Sciences. Leiden (Netherlands): Backhuys; p. 439–456.
  • Reynolds CS, Elliott JA, Frassl MA. 2014. Predictive utility of trait-separated phytoplankton groups: a robust approach to modeling population dynamics. J Great Lakes Res. 40:143–150. doi: 10.1016/j.jglr.2014.02.005
  • Reynolds CS, Huszar VLM, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res. 24:417–428. doi: 10.1093/plankt/24.5.417
  • Saavedra AS, Parra CM, Salamanca EJP, Cerón VA, Mosquera J. 2018. Phytoplankton functional groups in a high-rate algal pond used for the bioremediation of landfill leachate. Acta Biol Colomb. 23(3):295–303. doi: 10.15446/abc.v23n3.69537
  • Salmaso N, Naselli-Flores L, Padisák J. 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biol. 60:603–619. doi: 10.1111/fwb.12520
  • Sandgren CD. 1988. Growth and reproductive strategies of freshwater phytoplankton. Cambridge (UK): University Press.
  • Sarmento H. 2012. New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia. 686:1–14. doi: 10.1007/s10750-012-1011-6
  • Sas H, editor. 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. St. Augustin (Germany): Academia Verlag Richarz.
  • Shafik HM, Herodeck S, Présing M, Vörös L. 2001. Factors affecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. Arch Hydrobiol Algol Stud. 103:75–93.
  • Shapiro J. 1997. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshwater Biol. 37:307–323. doi: 10.1046/j.1365-2427.1997.00164.x
  • Silva CA, Train S, Rodrigues LC. 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia. 537:99–109. doi: 10.1007/s10750-004-2552-0
  • Silva LHS, Huszar VLM, Marinho MM, Rangel LM, Brasil J, Domingues CD, Branco CC, Roland F. 2014. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica. 48:1–10. doi: 10.1016/j.limno.2014.04.004
  • Soares MCS, Huszar VLM, Miranda MN, Mello MM, Roland F, Lürling M. 2013. Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia. 717:1–12. doi: 10.1007/s10750-013-1562-1
  • Soares MCS, Marinho MM, Huszar VLM, Branco CWC, Azevedo SMFO. 2008. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes Reserv Res Manage. 13:257–269. doi: 10.1111/j.1440-1770.2008.00379.x
  • Soares MC, Marinho MM, Azevedo SMOF, Branco CWC, Huszar VLM. 2012. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica. 42:197–203. doi: 10.1016/j.limno.2011.11.002
  • Sommer U. 1988. Growth and survival strategies of plankton succession. In: Sommer U, editor. Plankton ecology: succession in plankton communities. Berlin (Germany): Springer-Verlag; p. 57–106.
  • Sommer U, Sommer F. 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia. 147:183–194. doi: 10.1007/s00442-005-0320-0
  • Stanković I, Vlahović T, Gligora Udovič M, Várbíró G, Borics G. 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia. 698:217–231. doi: 10.1007/s10750-012-1148-3
  • Straškraba M. 1999. Self-organization, direct and indirect effects. In: Tundisi JG, M Straškraba, editor. Theoretical reservoir ecology and its applications. International Institute of Ecology, Brazilian Academy of Sciences. Leiden (Netherlands): Backhuys; p. 29–51.
  • Ter Braak CJF, Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination (version 5.0). Ithaca (NY): Microcomputer Power.
  • Tremarin PI, Freire EG, Algarte VM, Ludwig TV. 2015. Acanthoceras and Urosolenia species (Diatomeae) in subtropical reservoirs from South Brazil: ultrastructure, distribution and autoecology. Biota Neotrop. 15:1–16. doi: 10.1590/1676-06032014004314
  • Troost TA, Kooi BW, Kooijman SALM. 2005a. Ecological specialization of mixotrophic plankton in a mixed water column. Am Nat. 166:E45–E61. doi: 10.1086/432038
  • Troost TA, Kooi BW, Kooijman SALM. 2005b. When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model. Math Biosci. 193:159–182. doi: 10.1016/j.mbs.2004.06.010
  • Tucci A, Sant’Anna CL. 2003. Cylindrospermopsis raciborskii (Woloszýnska) Seenayya & Subba Raju (Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico [Weekly variation and relationships with environmental factors in an eutrophic reservoir]. Rev Bras Bot. 26:97–112. doi: 10.1590/S0100-84042003000100011
  • Uhelinger V. 1964. Études statistique des méthodes de dénobremente planctonique [Statistical methods of planktonic discovery methods]. Arch Sci. 77:121–223.
  • Utermöhl H. 1958. Zur Vervollkomnung der quantitativen phytoplankton-methodik [Perfecting the quantitative phytoplankton methodology]. Mitt Int Ver Theor Angew Limnol. 9:1–38.
  • Van de Waal DB, Verspagen JMH, Finke JF, Voumazou V, Immers AK, Kardinaal WE, Tonk L, Becker S, Van Donk E, Visser PM, Huisman J. 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 5:1438–1450. doi: 10.1038/ismej.2011.28
  • Van Gremberghe I, Vanormelingen P, Vanelslander B, Van der Gucht K, D’Hondt S, De Meester L, Vyverman W. 2009a. Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing. Oikos. 118(11):1647–1658. doi: 10.1111/j.1600-0706.2009.17538.x
  • Van Gremberghe I, Vanormelingen P, Van der Gucht K, Manceva A, D’Hondt S, De Meester L, Vyverman W. 2009b. Influence of Daphnia infochemicals on functional traits of Microcystis strains (Cyanobacteria). Hydrobiologia. 635:147–155. doi: 10.1007/s10750-009-9907-5
  • Vidal L, Kruk C. 2008. Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to latitude 34°53′S: taxonomical and ecological features in Uruguayan eutrophic lakes. Pan-Am J Aquat Sci. 3:142–151.
  • Wetzel RG, Likens GE. 1991. Limnological analyses. 2nd ed. New York (NY): Springer-Verlag.
  • Yamamoto Y, Nakahara H. 2005. The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length. Limnology. 6:1–6. doi: 10.1007/s10201-004-0138-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.