409
Views
2
CrossRef citations to date
0
Altmetric
Articles

Modelling how bottom-up and top-down processes control the major functional groups of biota in a large temperate shallow lake

, , , , , , , & show all
Pages 368-382 | Received 29 Jan 2021, Accepted 11 Jan 2022, Published online: 01 Apr 2022

References

  • Agasild H, Nõges T. 2005. Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. J Plankton Res. 27(11):1155–1174.
  • Agasild H, Zingel P, Tõnno I, Haberman J, Nõges T. 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia. 584(1):167–177.
  • Ahrens RNM, Walters CJ, Christensen V. 2012. Foraging arena theory. Fish Fish. 13(1):41–59.
  • Azzali I, Morozov A, Venturino E. 2017. Exploring the role of vertical heterogeneity in the stabilization of planktonic ecosystems under eutrophication. J Biol Syst. 25(04):715–741.
  • Barbiero RP, Balcer M, Rockwell DC, Tuchman ML. 2009. Recent shifts in the crustacean zooplankton community of Lake Huron. Can J Fish Aquat Sci. 66(5):816–828.
  • Benndorf JÜ, Böing W, Koop J, Neubauer I. 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biol. 47(12):2282–2295.
  • Bernotas P, Vetemaa M, Saks L, Eschbaum R, Verliin A, Järvalt A. 2015. Dynamics of European eel landings and stocks in the coastal waters of Estonia. ICES J Mar Sci. 73(1):fsv245.
  • Bhele U, Öğlü B, Tuvikene A, Bernotas P, Silm M, Järvalt A, Agasild H, Zingel P, Seller S, Timm H, et al. 2020. How long-term water level changes influence the spatial distribution of fish and other functional groups in a large shallow lake. J Great Lakes Res; [accessed 2020 Mar 3]. https://www.sciencedirect.com/science/article/pii/S0380133020300472?via%3Dihub
  • Brey T. 2001. Population dynamics in benthic invertebrates. A virtual handbook. http://www.thomas-brey.de/science/virtualhandbook/index.html
  • Carpenter SR, Cole JJ, Hodgson JR, Kitchell JE, Pace ML, Bade D, Cottinngham KL, Essington TE, Houser JN, Schindler DE. 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr. 71(2):163–186.
  • Chagaris DD, Mahmoudi B, Walters CJ, Allen MS. 2015. Simulating the trophic impacts of fishery policy options on the West Florida Shelf using Ecopath with Ecosim. Mar Coast Fish. 7(1):44–58.
  • Christensen V, Pauly D, editors. 1993. Trophic models of aquatic ecosystems (No. 26). WorldFish.
  • Christensen V, Walters CJ. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol Modell. 172(2–4):109–139.
  • Coll M, Navarro J, Palomera I. 2013. Ecological role, fishing impact, and management options for the recovery of a Mediterranean endemic skate by means of food web models. Biol Conserv. 157:108–120.
  • Cremona F, Järvalt A, Bhele U, Timm H, Seller S, Haberman J, Zingel P, Agasild H, Nõges P, Nõges T. 2018. Relationships between fisheries, foodweb structure, and detrital pathway in a large shallow lake. Hydrobiologia. 820(1):145–163.
  • Cremona F, Kõiv T, Kisand V, Laas A, Zingel P, Agasild H, Feldmann T, Järvalt A, Nõges P, Nõges T. 2014a. From bacteria to piscivorous fish: estimates of whole-lake and component-specific metabolism with an ecosystem approach. PLoS One. 9(7):e101845.
  • Cremona F, Timm H, Agasild H, Tõnno I, Feldmann T, Jones RI, Nõges T. 2014b. Benthic foodweb structure in a large shallow lake studied by stable isotope analysis. Freshw Sci. 33(3):885–894.
  • Dimarchopoulou D, Tsagarakis K, Keramidas I, Tsikliras AC. 2019. Ecosystem models and effort simulations of an untrawled gulf in the central Aegean Sea. Front Mar Sci. 6:648.
  • Emmerson MC, Raffaelli D. 2004. Predator–prey body size, interaction strength and the stability of a real food web. J Anim Ecol. 73(3):399–409.
  • Feldmann T, Nõges P. 2007. Factors controlling macrophyte distribution in large shallow Lake Võrtsjärv. Aquat Bot. 87(1):15–21.
  • Frau D, Battauz Y, Alvarenga PF, Scarabotti PA, Mayora G, Sinistro R. 2019. Assessing the relevance of top-down and bottom-up effects as phytoplankton structure drivers in a subtropical hypereutrophic shallow lake. Aquat Ecol. 53(2):265–280.
  • Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S. 2006. From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol. 75(6):1259–1268.
  • Ginter K, Blank K, Haberman J, Kangur A, Kangur K. 2018. Fish predation pressure on zooplankton in a large northern temperate lake: impact of adult predators versus juvenile predators. P Est Acad Sci. 65(4):356–367.
  • Ginter K, Kangur K, Kangur A, Kangur P, Haldna M. 2011. Diet patterns and ontogenetic diet shift of pikeperch, Sander lucioperca (L.) fry in lakes Peipsi and Võrtsjärv (Estonia). Hydrobiologia. 660(1):79–91.
  • Ginter K, Kangur A, Kangur P, Kangur K. 2015. Consequences of size-selective harvesting and changing climate on the pikeperch Sander lucioperca in two large shallow north temperate lakes. Fish Res. 165:63–70.
  • Haberman J, Pihu E, Raukas A. 2004. Lake Vrtsjarv. Tallinn (Estonia): Estonian Encyclopedia Publishers.
  • Havens KE, Elia AC, Taticchi MI, Fulton RS. 2009. Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia. 628(1):165–175.
  • Hessen DO, Kaartvedt S. 2014. Top–down cascades in lakes and oceans: Different perspectives but same story? J Plankton Res. 36(4):914–924.
  • Heymans JJ, Coll M, Link JS, Mackinson S, Steenbeek J, Walters C, Christensen V. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol Modell. 331:173–184.
  • Huisman JM, Matthijs HCP, Visser PM, editors. 2005. Harmful Cyanobacteria. Aquatic Ecology Series 3. Springer.
  • Hyndman RJ, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E. 2019. Package ‘forecast.’ https://cran.r-project.org/web/packages/forecast/forecast.pdf
  • Järvalt A, Laas A, Nõges P, Pihu E. 2004. The influence of water level fluctuations and associated hypoxia on the fishery of Lake Võrtsjärv, Estonia. Int J Ecohydrol Hydrobiol. 4(4):487–497.
  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. In: Kufel L, Prejs A, Rybak JI, editors. Shallow lakes’ 95. New York (NY): Springer; p. 151–164.
  • Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, Lauridsen TL, Mazzeo N, Branco CWC. 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia. 581(1):269–285.
  • Jeppesen E, Nõges P, Davidson TA, Haberman J, Nõges T, Blank K, Lauridsen TL, Søndergaard M, Sayer C, Laugaste R, et al. 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia. 676(1):279–297.
  • Kangur K, Timm H, Timm T, Timm V. 1998. Long-term changes in the macrozoobenthos of Lake Võrtsjärv. Limnologica. 28(1):75–83.
  • Kavanagh P, Newlands N, Christensen V, Pauly D. 2004. Automated parameter optimization for Ecopath ecosystem models. Ecol Modell. 172(2–4):141–149.
  • Kimmel DG, Roman MR, Zhang X. 2006. Spatial and temporal variability in factors affecting mesozooplankton dynamics in Chesapeake Bay: evidence from biomass size spectra. Limnol Oceanogr. 51(1):131–141.
  • Li Y, Meng J, Zhang C, Ji S, Kong Q, Wang R, Liu J. 2020. Bottom-up and top-down effects on phytoplankton communities in two freshwater lakes. PLoS One. 15(4):e0231357.
  • Libralato S, Christensen V, Pauly D. 2006. A method for identifying keystone species in food web models. Ecol Modell. 195(3–4):153–171.
  • Mao Z, Gu X, Cao Y, Zhang M, Zeng Q, Chen H, Shen R, Jeppesen E. 2020. The role of top-down and bottom-up control for phytoplankton in a subtropical shallow eutrophic lake: evidence based on long-term monitoring and modeling. Ecosystems. 23(7):1449–1463.
  • McQueen DJ, Johannes MRS, Post JR, Stewart TJ, Lean DRS. 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol Monogr. 59(3):289–309.
  • Mensah ETD, Dankwa HR, Lauridsen TL, Trolle D, Asmah R, Campion BB, Edziyie R, Christensen V. 2019. Mass balance model of Lake Volta fisheries: the use of Ecopath model. Lakes Reserv Res Manag. 24(3):246–254.
  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int. 59:303–327.
  • Montagnes DJS, Lynn DH, Roff JC, Taylor WD. 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar Biol. 99(1):21–30.
  • Morissette L, Hammill MO, Savenkoff C. 2006. The trophic role of marine mammals in the northern Gulf of St. Lawrence. Mar Mammal Sci. 22(1):74–103.
  • Nõges T, Arst H, Laas A, Kauer T, Noges P, Toming K. 2011. Reconstructed long-term time series of phytoplankton primary production of a large shallow temperate lake: the basis to assess the carbon balance and its climate sensitivity. Hydrobiologia. 667(1):205–222.
  • Nõges T, Järvalt A, Haberman J, Zingel P, Nõges P. 2016. Is fish able to regulate filamentous blue-green dominated phytoplankton? Hydrobiologia. 780(1):59–69.
  • Nõges T, Luup H, Feldmann T. 2010. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquat Ecol. 44(1):83–92.
  • Nõges T, Nõges P, Laugaste R. 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia. 506–509(1–3):257–263.
  • Ofir E, Heymans JJ, Shapiro J, Goren M, Spanier E, Gal G. 2017. Predicting the impact of lake biomanipulation based on food-web modeling—Lake Kinneret as a case study. Ecol Modell. 348:14–24.
  • Ojaveer E, Pihu E, Saat T. 2003. Fishes of Estonia. Tallinn (Estonia): Estonian Academy Publishers.
  • Palomares MLD, Pauly D. 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Mar Freshwater Res. 49(5):447–453.
  • Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J Mar Sci. 39(2):175–192.
  • R Core Team. 2019. R: a language and environment for statistical computing. Vienna (Austria).
  • Rice JC. 2000. Evaluating fishery impacts using metrics of community structure. ICES J Mar Sci. 57(3):682–688.
  • Schulze T, Baade U, Dörner H, Eckmann R, Haertel-Borer SS, Hölker F, Mehner T. 2006. Response of the residential piscivorous fish community to introduction of a new predator type in a mesotrophic lake. Can J Fish Aquat Sci. 63(10):2202–2212.
  • Shannon LJ, Cury PM. 2004. Indicators quantifying small pelagic fish interactions: application using a trophic model of the southern Benguela ecosystem. Ecol Indic. 3(4):305–321.
  • Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS. 2002. A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett. 5(6):785–791.
  • Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL. 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philos T R Soc B. 367(1605):3008–3017.
  • Søndergaard M, Jeppesen E, Berg S. 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool. 2. Effects on lower trophic levels in Lake Lyng, Denmark. Hydrobiologia. 342/343:319–325.
  • Søndergaard M, Liboriussen L, Pedersen AR, Jeppesen E. 2008. Lake restoration by fish removal: short-and long-term effects in 36 Danish lakes. Ecosystems. 11(8):1291–1305.
  • Tamm M, Freiberg R, Tõnno I, Nõges P, Nõges T. 2015. Pigment-based chemotaxonomy—a quick alternative to determine algal assemblages in large shallow eutrophic lake? PLoS One. 10(3):e0122526.
  • Tõnno I, Agasild H, Kõiv T, Freiberg R, Nõges P, Nõges T. 2016. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS One. 11(4):e0154526.
  • Vanderploeg HA, Ludsin SA, Ruberg SA, Höök TO, Pothoven SA, Brandt SB, Lang GA, Liebig JR, Cavaletto JF. 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. J Exp Mar Bio Ecol. 381:S92–S107.
  • Williams AE, Moss B, Eaton J. 2002. Fish induced macrophyte loss in shallow lakes: top-down and bottom-up processes in mesocosm experiments. Freshwater Biol. 47(11):2216–2232.
  • Wu Z, Zhang X, Lozano-Montes HM, Loneragan NR. 2016. Trophic flows, kelp culture and fisheries in the marine ecosystem of an artificial reef zone in the Yellow Sea. Estuar Coast Shelf Sci. 182:86–97.
  • Wysujack K, Kasprzak P, Laude U, Mehner T. 2002. Management of a pikeperch stock in a long-term biomanipulated stratified lake: efficient predation vs. low recruitment. Hydrobiologia. 479:169–180.
  • Zapletal T, Mareš J, Jurajda P, Všetičková L. 2013. The food of common bream (Abramis brama L.) in a biomanipulated water supply reservoir. Acta Univ Agric et Silvic. 60(6):357–366.
  • Zingel P, Agasild H, Nõges T, Kisand V. 2007. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake. Microb Ecol. 53(1):134–142.
  • Zingel P, Haberman J. 2007. A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): rotifers and crustaceans versus ciliates. In: Nõges T, Eckmann R, Kangur K, Nõges P, Reinart A, et al., editors. European large lakes ecosystem changes and their ecological and socioeconomic impacts. Springer; p. 153–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.