265
Views
0
CrossRef citations to date
0
Altmetric
Articles

Sediment and water-column phosphorus chemistry in streams at baseflow across varying catchment geologies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 510-525 | Received 20 Oct 2021, Accepted 08 Mar 2022, Published online: 05 Jul 2022

References

  • [APHA] American Public Health Association. 2005. Standard methods for the examination of water and wastewater, 21st ed. Washington (DC).
  • Appelo CAJ, Postma D. 2005. Geochemistry, groundwater and pollution, 2nd ed. Leiden (Netherlands): A.A. Balkema.
  • Azizian M, Boano F, Cook PLM, Detwiler RL, Rippy MA, Grant SB. 2017. Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams. Water Resour Res. 53(5):3941–3967.
  • Bache B, Williams E. 1971. A phosphate sorption index for soil. Eur J Soil Sci. 22(3):289–301.
  • Baken S, Regelink IC, Comans RNJ, Smolders E, Koopmans GF. 2016. Iron-rich colloids as carriers of phosphorus in streams: a field-flow fractionation study. Water Res. 99:83–90.
  • Baulch HM, Futter MN, Jin L, Whitehead PG, Woods DT, Dillon PJ, Butterfield DA, Oni SK, Aspden LP, O’Connor EM, Crossman J. 2013. Phosphorus dynamics across intensively monitored subcatchments in the Beaver River. Inland Waters. 3(2):187–206.
  • Blakemore LC, Searle PL, Daly BK. 1987. Methods for chemical analysis of soils. New Zealand: NZ Soil Bureau.
  • Bluth GJS, Kump LR. 1994. Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta. 58(10):2341–2359.
  • Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A. 2014. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev Geophys. 52:603–679.
  • Briggs MA, Day-Lewis FD, Zarnetske JP, Harvey JW. 2015. A physical explanation for the development of redox microzones in hyporheic flow. Geophys Res Lett. 42(11):4402–4410.
  • Brown LJ. 2001. Canterbury. In: White PA, Rosen MR, editors. Groundwaters of New Zealand. Wellington (New Zealand): New Zealand Hydrological Society Inc.; p. 441–459.
  • Burkitt LL, Moody PW, Gourley CJP, Hannah MC. 2002. A simple phosphorus buffering index for Australian soils. Soil Res. 40(3):497–513.
  • Coelho JP, Flindt MR, Jensen HS, Lillebø AI, Pardal MA. 2004. Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes. Estuar Coast Shelf Sci. 61(4):583–590.
  • Cohen MJ, Kurz MJ, Heffernan JB, Martin JB, Douglass RL, Foster CR, Thomas RG. 2013. Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol Monogr. 83(2):155–176.
  • Condron LM, Newman S. 2011. Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J Soils Sediments. 11(5):830–840.
  • Corman JR, Moody EK, Elser JJ. 2015. Stoichiometric impact of calcium carbonate deposition on nitrogen and phosphorus supplies in three montane streams. Biogeochemistry. 126(3):285–300.
  • Corman JR, Moody EK, Elser JJ. 2016. Calcium carbonate deposition drives nutrient cycling in a calcareous headwater stream. Ecol Monogr. 86(4):448–461.
  • Crockford L, Jordan P, Melland AR, Taylor D. 2015. Storm-triggered, increased supply of sediment-derived phosphorus to the epilimnion in a small freshwater lake. Inland Waters. 5(1):15–26.
  • D’Angelo E, Crutchfield J, Vandiviere M. 2001. Rapid, sensitive, microscale determination of phosphate in water and soil. J Environ Qual. 30(6):2206–2209.
  • Demars BOL. 2008. Whole-stream phosphorus cycling: testing methods to assess the effect of saturation of sorption capacity on nutrient uptake length measurements. Water Res. 42(10–11):2507–2516.
  • Diaz OA, Reddy KR, Moore PA. 1994. Solubility of inorganic phosphorus in stream water as influenced by pH and calcium concentration. Water Res. 28(8):1755–1763.
  • Dodds WK. 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. J Phycol. 39(5):840–849.
  • Dodds WK, Smith VH. 2016. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters. 6(2):155–164.
  • Dupas R, Musolff A, Jawitz JW, Rao PSC, Jäger CG, Fleckenstein JH, Rode M, Borchardt D. 2017. Carbon and nutrient export regimes from headwater catchments to downstream reaches. Biogeosciences. 14(18):4391–4407.
  • Dupas R, Tittel J, Jordan P, Musolff A, Rode M. 2018. Non-domestic phosphorus release in rivers during low-flow: mechanisms and implications for sources identification. J Hydrol. 560:141–149.
  • Ensign SH, Doyle MW. 2006. Nutrient spiraling in streams and river networks. J Geophys Res-Biogeo. 11:G04009.
  • Eshel G, Levy GJ, Mingelgrin U, Singer MJ. 2004. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci Soc Am J. 68(3):736–743.
  • Froelich PN. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol Oceanogr. 33(4.2):649–668.
  • Gérard F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils – a myth revisited. Geoderma. 262:213–226.
  • Goldberg S, Sposito G. 1984. A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Sci Soc Am J. 48(4):772–778.
  • Gottselig N, Amelung W, Kirchner JW, Bol R, Eugster W, Granger SJ, Hernández-Crespo C, Herrmann F, Keizer JJ, Korkiakoski M, et al. 2017. Elemental composition of natural nanoparticles and fine colloids in European forest stream waters and their role as phosphorus carriers. Global Biogeochem Cy. 31(10):1592–1607.
  • Griffiths NA, Johnson LT. 2018. Influence of dual nitrogen and phosphorus additions on nutrient uptake and saturation kinetics in a forested headwater stream. Freshwater Sci. 37(4):810–825.
  • Haggard BE, Sharpley AN. 2007. Phosphorus transport in streams: processes and modeling considerations. In: Radcliffe DE, Cabrera ML, editors. Modeling phosphorus in the environment. Boca Raton (FL): CRC Press; p. 105–130.
  • Haggard BE, Smith DR, Brye KR. 2007. Variations in stream water and sediment phosphorus among select Ozark catchments. J Environ Qual. 36(6):1725–1734.
  • Haggard BE, Stanley EH, Storm DE. 2005. Nutrient retention in a point-source-enriched stream. J N Am Benthol Soc. 24(1):29–47.
  • Hall RO, Bernhardt ES, Likens GE. 2002. Relating nutrient uptake with transient storage in forested mountain streams. Limnol Oceanogr. 47(1):255–265.
  • Harvey J, Gomez-Velez J, Schmadel N, Scott D, Boyer E, Alexander R, Eng K, Golden H, Kettner A, Konrad C, et al. 2019. How hydrologic connectivity regulates water quality in river corridors. J Am Water Resour As. 55(2):369–381.
  • Harvey JW. 2016. Hydrologic exchange flows and their ecological consequences in river corridors. In: Jones JB, Stanley EH, editors. Stream ecosystems in a changing environment. London (UK): Academic Press; p. 1–83.
  • Herndon EM, Kinsman-Costello L, Duroe KA, Mills J, Kane ES, Sebestyen SD, Thompson AA, Wullschleger SD. 2019. Iron (oxyhydr)oxides serve as phosphate traps in tundra and boreal peat soils. J Geophys Res Biogeosci. 124(2):227–246.
  • Hoffman AR, Armstrong DE, Lathrop RC, Penn MR. 2009. Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquat Geochem. 15(3):371–389.
  • Hollander M, Wolfe DA, Chicken E, editors. 2013. The one-way layout. Chapter 6. In: Nonparametric statistical methods. 3rd ed. USA: John Wiley & Sons; p. 202–288.
  • House WA. 1999. The physico-chemical conditions for the precipitation of phosphate with calcium. Environ Technol. 20(7):727–733.
  • House WA. 2003. Geochemical cycling of phosphorus in rivers. Appl Geochem. 18(5):739–748.
  • Hyacinthe C, Bonneville S, Van Cappellen P. 2006. Reactive iron(III) in sediments: chemical versus microbial extractions. Geochim Cosmochim Acta. 70(16):4166–4180.
  • Jan J, Borovec J, Kopáček J, Hejzlar J. 2013. What do results of common sequential fractionation and single-step extractions tell us about P binding with Fe and Al compounds in non-calcareous sediments? Water Res. 47(2):547–557.
  • Jan J, Borovec J, Kopáček J, Hejzlar J. 2015. Assessment of phosphorus associated with Fe and Al (hydr)oxides in sediments and soils. J Soils Sediments. 15(7):1620–1629.
  • Jarvie HP, Jürgens MD, Williams RJ, Neal C, Davies JJL, Barrett C, White J, Jarvie HP, Ju MD, Davies JJL, et al. 2005. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. J Hydrol. 304(1):51–74.
  • Jarvie HP, Mortimer RJG, Palmer-Felgate EJ, Quinton KS, Harman SA, Carbo P. 2008. Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediments using DET gel probes. J Hydrol. 350(3–4):261–273.
  • Jarvie HP, Neal C, Jürgens MD, Sutton EJ, Neal M, Wickham HD, Hill LK, Harman SA, Davies JJL, Warwick A, et al. 2006. Within-river nutrient processing in chalk streams: the Pang and Lambourn, UK. J Hydrol. 330(1):101–125.
  • Jarvie HP, Sharpley AN, Scott JT, Haggard BE, Bowes MJ, Massey LB. 2012. Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle. Environ Sci Technol. 46(24):13284–13292.
  • Jensen HS, Kristensen P, Jeppesen E, Skytthe A. 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. In: Hart BT, Sly PG, editors. Sediment/water interactions. Dordrecht: Springer Netherlands; p. 731–743.
  • Jensen HS, McGlathery KJ, Marino R, Howarth RW. 1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol Oceanogr. 43(5):799–810.
  • Kleinman PJA. 2017. The persistent environmental relevance of soil phosphorus sorption saturation. Curr Pollut Rep. 3(2):141–150.
  • Konietschke F, Placzek M, Schaarschmidt F, Hothorn LA. 2015. nparcomp: an R software package for nonparametric multiple comparisons and simultaneous confidence intervals. J Stat Softw. 64(1):1–17.
  • Kreiling RM, Thoms MC, Bartsch LA, Richardson WB, Christensen VG. 2019. Complex response of sediment phosphorus to land use and management within a river network. J Geophys Res-Biogeo. 124(7):1764–1780.
  • Kronvang B, Hoffmann CC, Dröge R. 2009. Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments. Mar Freshwater Res. 60(7):638–646.
  • Krumina L, Kenney JPL, Loring JS, Persson P. 2016. Desorption mechanisms of phosphate from ferrihydrite and goethite surfaces. Chem Geol. 427:54–64.
  • Kusmer AS, Goyette J-O, MacDonald GK, Bennett EM, Maranger R, Withers PJA. 2019. Watershed buffering of legacy phosphorus pressure at a regional scale: a comparison across space and time. Ecosystems. 22(1):91–109.
  • Lewandowski J, Nützmann G. 2010. Nutrient retention and release in a floodplain’s aquifer and in the hyporheic zone of a lowland river. Ecol Eng. 36(9):1156–1166.
  • Lijklema L. 1980. Interaction of orthophosphate with iron(III) and aluminum hydroxides. Environ Sci Technol. 14(5):537–541.
  • Loh PS, Molot LA, Nowak E, Nürnberg GK, Watson SB, Ginn B. 2013. Evaluating relationships between sediment chemistry and anoxic phosphorus and iron release across three different water bodies. Inland Waters. 3(1):105–118.
  • Machesky ML, Holm TR, Slowikowski JA. 2010. Phosphorus speciation in stream bed sediments from an agricultural watershed: solid-phase associations and sorption behavior. Aquat Geochem. 16(4):639–662.
  • Macintosh KA, Mayer BK, McDowell RW, Powers SM, Baker LA, Boyer TH, Rittmann BE. 2018. Managing diffuse phosphorus at the source versus at the sink. Environ Sci Technol. 52(21):11995–12009.
  • Marton JM, Roberts BJ. 2014. Spatial variability of phosphorus sorption dynamics in Louisiana salt marshes. J Geophys Res-Biogeo. 119(3):451–465.
  • McDaniel MD, David MB, Royer TV. 2009. Relationships between benthic sediments and water column phosphorus in Illinois streams. J Environ Qual. 38(2):607–617.
  • McDowell RW. 2003. Sediment phosphorus chemistry and microbial biomass along a lowland New Zealand stream. Aquat Geochem. 9(1):19–40.
  • McDowell RW. 2015. Relationship between sediment chemistry, equilibrium phosphorus concentrations, and phosphorus concentrations at baseflow in rivers of the New Zealand National River Water Quality Network. J Environ Qual. 44(3):921–929.
  • McDowell RW, Biggs BJF, Sharpley AN, Nguyen L. 2004. Connecting phosphorus loss from agricultural landscapes to surface water quality. Chem Ecol. 20(1):1–40.
  • McDowell RW, Cox N, Daughney CJ, Wheeler D, Moreau M. 2015. A national assessment of the potential linkage between soil, and surface and groundwater concentrations of phosphorus. J Am Water Resour As. 51(4):992–1002.
  • McDowell RW, Depree C, Stenger R. 2020. Likely controls on dissolved reactive phosphorus concentrations in baseflow of an agricultural stream. J Soils Sediments. 20(8):3254–3265.
  • McDowell RW, Simpson ZP, Stenger R, Depree C. 2019. The influence of a flood event on the potential sediment control of baseflow phosphorus concentrations in an intensive agricultural catchment. J Soils Sediments. 19(1):429–438.
  • McDowell RW, Snelder TH, Cox N, Booker DJ, Wilcock RJ. 2013. Establishment of reference or baseline conditions of chemical indicators in New Zealand streams and rivers relative to present conditions. Mar Freshwater Res. 64(5):387–400.
  • Meals DW, Dressing SA, Davenport TE. 2010. Lag time in water quality response to best management practices: a review. J Environ Qual. 39(1):85–96.
  • Monbet P, McKelvie DI, Worsfold PJ. 2010. Sedimentary pools of phosphorus in the eutrophic Tamar estuary (SW England). J Environ Monit. 12(1):296–304.
  • Mulholland PJ, Marzolf ER, Webster JR, Hart DR, Hendricks SP. 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnol Oceanogr. 42(3):443–451.
  • Muscarella ME, Bird KC, Larsen ML, Placella SA, Lennon JT. 2014. Phosphorus resource heterogeneity in microbial food webs. Aquat Microb Ecol. 73(3):259–272.
  • Packman AI, Salehin M. 2003. Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia. 494:291–297.
  • Palmer-Felgate EJ, Bowes MJ, Stratford C, Neal C, MacKenzie S. 2011. Phosphorus release from sediments in a treatment wetland: contrast between DET and EPC0 methodologies. Ecol Eng. 37(6):826–832.
  • Parfitt RL. 1979. Anion adsorption by soils and soil materials. In: Brady NC, editor. Advances in agronomy. Vol. 30. Cambridge (MA): Academic Press; p. 1–50.
  • Parker SR, Gammons CH, Poulson SR, DeGrandpre MD. 2007. Diel variations in stream chemistry and isotopic composition of dissolved inorganic carbon, upper Clark Fork River, Montana, USA. Appl Geochem. 22(7):1329–1343.
  • Parkhurst DL, Appelo CAJ. 2013. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Reston (VA): US Geological Survey.
  • Parsons CT, Rezanezhad F, O’Connell DW, Cappellen PV. 2017. Sediment phosphorus speciation and mobility under dynamic redox conditions. Biogeosciences. 14(14):3585–3602.
  • Peiffer S, Kappler A, Haderlein SB, Schmidt C, Byrne JM, Kleindienst S, Vogt C, Richnow HH, Obst M, Angenent LT, et al. 2021. A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nat Geosci. 14(5):264–272.
  • Plant LJ, House WA. 2002. Precipitation of calcite in the presence of inorganic phosphate. Colloid surface A. 203(1):143–153.
  • R Core Team. 2020. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://ww.r-project.org/
  • Rawlins BG. 2011. Controls on the phosphorus content of fine stream bed sediments in agricultural headwater catchments at the landscape-scale. Agric Ecosyst Environ. 144(1):352–363.
  • Ren J, Packman AI. 2005. Coupled stream-subsurface exchange of colloidal hematite and dissolved zinc, copper, and phosphate. Environ Sci Technol. 39(17):6387–6394.
  • Rounds SA. 2012. Alkalinity and acid neutralizing capacity. In: Wilde FD, Radtke DB, editors. National field manual for the collection of water-quality data. Vol. 9. Reston (VA): US Geological Survey; p. 1–45.
  • Runkel RL, Kimball BA, McKnight DM, Bencala KE. 1999. Reactive solute transport in streams: a surface complexation approach for trace metal sorption. Water Resour Res. 35(12):3829–3840.
  • Ruttenberg KC. 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr. 37(7):1460–1482.
  • Senn A-C, Kaegi R, Hug SJ, Hering JG, Mangold S, Voegelin A. 2015. Composition and structure of Fe(III)-precipitates formed by Fe(II) oxidation in water at near-neutral pH: interdependent effects of phosphate, silicate and Ca. Geochim Cosmochim Acta. 162:220–246.
  • Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P. 2013. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual. 42(5):1308–1326.
  • Simpson ZP, McDowell RW, Condron LM. 2019. The error in stream sediment phosphorus fractionation and sorption properties effected by drying pretreatments. J Soils Sediments. 19(3):1587–1597.
  • Simpson ZP, McDowell RW, Condron LM, McDaniel MD, Jarvie HP, Abell JM. 2021. Sediment phosphorus buffering in streams at baseflow: a meta-analysis. J Environ Qual. 50(2):287–311.
  • Smolders E, Baetens E, Verbeeck M, Nawara S, Diels J, Verdievel M, Peeters B, De Cooman W, Baken S. 2017. Internal loading and redox cycling of sediment iron explain reactive phosphorus concentrations in lowland rivers. Environ Sci Technol. 51(5):2584–2592.
  • Snelder TH, Biggs BJF. 2002. Multiscale river environment classification for water resources management. J Am Water Resour As. 38(5):1225–1239.
  • Snelder TH, Biggs BJF, Weatherhead M. 2010. New Zealand River Environment Classification user guide. Wellington (New Zealand): Ministry for the Environment.
  • Stets EG, Butman D, McDonald CP, Stackpoole SM, DeGrandpre MD, Striegl RG. 2017. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochem Cy. 31(4):663–677.
  • Stumm W, Morgan JJ. 1996. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd ed. New York (NY): John Wiley & Sons.
  • Stumm W, Sulzberger B. 1992. The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochim Cosmochim Acta. 56(8):3233–3257.
  • Stutter MI, Demars BOLL, Langan SJ. 2010. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading. Water Res. 44(15):4425–4436.
  • van der Grift B, Rozemeijer JC, Griffioen J, van der Velde Y. 2014. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water. Hydrol Earth Syst Sci. 18(11):4687–4702.
  • Venables WN, Ripley BD. 2002. Modern applied statistics with S-PLUS, 4th ed. New York (NY): Springer.
  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P. 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 15(6):785–790.
  • Weigelhofer G. 2017. The potential of agricultural headwater streams to retain soluble reactive phosphorus. Hydrobiologia. 793(1):149–160.
  • Weigelhofer G, Ramião JP, Pitzl B, Bondar-Kunze E, O’Keeffe J. 2018. Decoupled water–sediment interactions restrict the phosphorus buffer mechanism in agricultural streams. Sci Total Environ. 628–629:44–52.
  • Wohl E. 2015. Legacy effects on sediments in river corridors. Earth Sci Rev. 147:30–53.
  • Wood SA, Depree C, Brown L, McAllister T, Hawes I. 2015. Entrapped sediments as a source of phosphorus in epilithic cyanobacterial proliferations in low nutrient rivers. PLoS One. 10(10):e0141063.
  • Zak D, Kleeberg A, Hupfer M. 2006. Sulphate-mediated phosphorus mobilization in riverine sediments at increasing sulphate concentration, River Spree, NE Germany. Biogeochemistry. 80(2):109–119.
  • Zhang JZ, Huang XL. 2007. Relative importance of solid-phase phosphorus and iron on the sorption behavior of sediments. Environ Sci Technol. 41(8):2789–2795.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.