214
Views
1
CrossRef citations to date
0
Altmetric
Articles

Isolation and characterisation of monoclonal picocyanobacterial strains from contrasting New Zealand lakes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 383-396 | Received 11 Sep 2021, Accepted 08 Mar 2022, Published online: 15 Jul 2022

References

  • Bayer TK. 2013. Effects of climate change on two large, deep oligotrophic lakes in New Zealand [dissertation]. Dunedin (New Zealand): University of Otago.
  • Bennett A, Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 58(2):419–435.
  • Bláha L, Maršálek B. 1999. Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Arch Hydrobiol Suppl Algol Stud. 127:95–108.
  • Bolch CJS, Blackburn SI. 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J Appl Phycol. 8(1):5–13.
  • Burns CW, Stockner JG. 1991. Picoplankton in six New Zealand lakes: abundance in relation to season and trophic state. Int Rev Ges Hydrobiol Hydrogr. 76(4):523–536.
  • Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado A-B, Ghai R, Picazo A, Camacho A, Rodriguez-Valera F. 2017. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front Microbiol. 8:1151.
  • Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, Coutinho FH, Rodriguez-Valera F. 2018. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol. 20(10):3757–3771.
  • Callieri C. 2017. Synechococcus plasticity under environmental changes. FEMS Microbiol Lett. 364(23):fnx229.
  • Callieri C, Amalfitano S, Corno G, Bertoni R. 2016. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol Ecol. 92(11):fiw154.
  • Callieri C, Amalfitano S, Corno G, Di Cesare A, Bertoni R, Eckert EM. 2017. The microbiome associated with two Synechococcus ribotypes at different levels of ecological interaction. J Phycol. 53(6):1151–1158.
  • Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, Bertoni R. 2013. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol. 85(2):293–301.
  • Callieri C, Mandolini E, Bertoni R, Lauceri R, Picazo A, Camacho A, Cabello-Yeves PJ. 2021. Atlas of picocyanobacteria monoclonal strains from the collection of CNR-IRSA, Italy. J Limnol. 80(1):10.4081/jlimnol.2021.2002.
  • Camacho A, Miracle MR, Vicente E. 2003. Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Arch Hydrobiol. 157(3):321–338.
  • Carrick HJ, Schelske CL. 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnol Oceanogr. 42(7):1613–1621.
  • Castenholz RW, Wilmotte A, Herdman M, Rippka R, Waterbury JB, Iteman I, Hoffmann L. 2001. Phylum BX. Cyanobacteria. In: Boone DR, Castenholz RW, Garrity GM, editor. Bergey’s manual of systematic bacteriology: volume one the archaea and the deeply branching phototrophic bacteria. New York (NY): Springer; p. 473–599.
  • Crosbie ND, Pöckl M, Weisse T. 2003. Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Meth. 55(2):361–370.
  • De Las Rivas J, Telfer A, Barber J. 1993. Two coupled β-carotene molecules protect P680 from photodamage in isolated photosystem II reaction centres. BBA-Bioenergetics. 1142(1):155–164.
  • Di Cesare A, Cabello-Yeves PJ, Chrismas NAM, Sánchez-Baracaldo P, Salcher MM, Callieri C. 2018. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genomics. 19(1):259.
  • Di Cesare A, Dzhembekova N, Cabello-Yeves PJ, Eckert EM, Slabakova V, Slabakova N, Peneva E, Bertoni R, Corno G, Salcher MM, et al. 2020. Genomic comparison and spatial distribution of different Synechococcus phylotypes in the Black Sea. Front Microbiol. 11:1979.
  • Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, Pitt FD, Ostrowski M, Six C, Brillet-Guéguen L, et al. 2020. Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria. Front Microbiol. 11:2129.
  • Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac N T, Wincker P, Dossat C, et al. 2008. Unravelling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 9(5):R90.
  • Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797.
  • Ernst A. 1991. Cyanobacterial picoplankton from Lake Constance. I. Isolation by fluorescence characteristics. J Plankton Res. 13(6):1307–1312.
  • Ernst A, Sandmann G, Postius C, Brass S, Kenter U, Böger P. 1992. Cyanobacterial picoplankton from Lake Constance: II. Classification of isolates by cell morphology and pigment composition. Bot Acta. 105(3):161–167.
  • Felföldi T, Somogyi B, Marialigeti K, Vörös L. 2011. Notes on the biogeography of non-marine planktonic picocyanobacteria: re-evaluating novelty. J Plankton Res. 33(10):1622–1626.
  • Ferrari GM, Tassan S. 1999. A method using chemical oxidation to remove light absorption by phytoplankton pigments. J Phycol. 35:1090–1098.
  • Frazão B, Martins R, Vasconcelos V. 2010. Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous North Atlantic marine cyanobacteria? Mar Drugs. 8(6):1908–1919.
  • Gaget V, Chiu Y-T, Lau M, Humpage AR. 2017. From an environmental sample to a long-lasting culture: the steps to better isolate and preserve cyanobacterial strains. J Appl Phycol. 29(1):309–321.
  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr. 57(1):81–91.
  • Guillard RRL, Murphy LS, Foss P, Liaaen-Jensen S. 1985. Synechococcus spp. as likely zeaxanthin-dominant ultraphytoplankton in the North Atlantic. Limnol Oceanogr. 30(2):412–414.
  • Held P. 2009. The importance of using the appropriate microplate for absorbance measurements in the ultraviolet region of the spectrum. Winooski (VT): BioTek Instruments.
  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 8(1):15–25.
  • Hirschberg J, Chamovitz D. 1994. Carotenoids in cyanobacteria. In: Bryant DA, editor. The molecular biology of cyanobacteria. Dordrecht: Springer Netherlands. p. 559–579.
  • Honda D, Yokota A, Sugiyama J. 1999. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol. 48(6):723–739.
  • Huber P, Diovisalvi N, Ferraro M, Metz S, Lagomarsino L, Llames ME, Royo-Llonch M, Bustingorry J, Escaray R, Acinas SG, et al. 2017. Phenotypic plasticity in freshwater picocyanobacteria. Environ Microbiol. 19(3):1120–1133.
  • Hunter-Cevera KR, Post AF, Peacock EE, Sosik HM. 2016. Diversity of Synechococcus at the Martha’s Vineyard coastal observatory: insights from culture isolations, clone libraries, and flow cytometry. Microb Ecol. 71(2):276–289.
  • Jardillier L, Zubkov MV, Pearman J, Scanlan DJ. 2010. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast. Atlantic Ocean ISME J. 4(9):1180–1192.
  • Jasser I, Callieri C. 2017. Analysis of picocyanobacteria abundance in epifluorescence microscopy. In: Meriluoto J, Spoof L, Codd GA, editors. The handbook of cyanobacterial monitoring and cyanotoxin analysis. Chichester (UK): John Wiley & Sons; p. 339–342.
  • Jasser I, Karnkowska-Ishikawa A, Kozłowska E, Królicka A, Łukomska-Kowalczyk M. 2010. Composition of picocyanobacteria community in the Great Mazurian Lakes: isolation of phycoerythrin-rich and phycocyanin-rich ecotypes from the system – comparison of two methods. Pol J Microbiol. 59(1):21–31.
  • Jungblut A-D, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol. 7(4):519–529.
  • Kishino M, Takahashi M, Okami N, Ichimura S. 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci. 37:634–642.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA x: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35:1547–1549.
  • Malfatti F, Azam F. 2009. Atomic force microscopy reveals microscale networks and possible symbioses among pelagic marine bacteria. Aquat Microb Ecol. 58:1–14.
  • Martins RF, Ramos MF, Herfindal L, Sousa JA, Skærven K, Vasconcelos VM. 2008. Antimicrobial and cytotoxic assessment of marine cyanobacteria - Synechocystis and Synechococcus. Mar Drugs. 6(1):1–11.
  • Neilan BA, Jacobs D, Therese DD, Blackall LL, Hawkins PR, Cox PT, Goodman AE. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol. 47(3):693–697.
  • Palenik B. 2001. Chromatic adaptation in marine Synechococcus strains. Appl Environ Microbiol. 67(2):991–994.
  • Petersen R. 1991. Carbon-14 uptake by picoplankton and total phytoplankton in eight New Zealand lakes. Int Rev Ges Hydrobiol Hydrogr. 76(4):631–641.
  • Pick FR. 1991. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol Oceanogr. 36(7):1457–1462.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1):D590–D596.
  • Rhodes L, Smith K, MacKenzie L, Wood S, Ponikla K, Harwood D, Packer M, Munday R. 2016. The Cawthron Institute culture collection of micro-algae: a significant national collection. New Zeal J Mar Fresh. 50(2):291–316.
  • Roy S, Llewellyn CA, Egeland ES, Johnsen G, Johnsen G. 2011. Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge (UK): Cambridge University Press.
  • Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. 2019. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front Microbiol. 10:45.
  • Scanlan DJ. 2012. Marine picocyanobacteria. In: Whitten BA, editor. The ecology of Cyanobacteria II: their diversity in space and time. Dordrecht (Netherlands): Springer; p. 503–533.
  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. 2009. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev. 73(2):249–299.
  • Schallenberg LA, Pearman JK, Burns CW, Wood SA. 2021a. Spatial abundance and distribution of picocyanobacterial communities in two contrasting lakes revealed using environmental DNA metabarcoding. FEMS Microbiol Ecol. 97(7):fiab075.
  • Schallenberg LA, Pearman JK, Burns CW, Wood SA. 2021b. Metabarcoding reveals lacustrine picocyanobacteria respond to environmental change through adaptive community structuring. Front Microbiol. 12:3258.
  • Schallenberg M, Burns CW. 2001. Tests of autotrophic picoplankton as early indicators of nutrient enrichment in an ultra-oligotrophic lake. Freshwater Biol. 46(1):27–37.
  • Six C, Thomas J-C, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F. 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8(12):R259.
  • Śliwińska-Wilczewska S, Konarzewska Z, Wiśniewska K, Konik M. 2020. Photosynthetic pigments changes of three phenotypes of picocyanobacteria Synechococcus sp. under different light and temperature conditions. Cells. 9(9):2030.
  • Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Latała A. 2018. Allelopathic and bloom-forming picocyanobacteria in a changing world. Toxins. 10(1):48.
  • Vila X, Abella CA. 2001. Light-harvesting adaptations of planktonic phototrophic micro-organisms to different light quality conditions. Hydrobiologia. 452:15–30.
  • Vörös L, Callieri C, Balogh KV, Bertoni R. 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. In: Alvarez-Cobelas M, Reynolds CS, Sánchez-Castillo P, Kristiansen J, editors. Phytoplankton trophic gradients. Dordrecht: Springer Netherlands; p. 117–125.
  • Wojtasiewicz B, Stoń-Egiert J. 2016. Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. J Appl Phycol. 28(4):2299–2314.
  • Wood SA, Maier MY, Puddick J, Pochon X, Zaiko A, Dietrich DR, Hamilton DP. 2017. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiol Ecol. 93(2):fiw234.
  • Wood SA, Rhodes LL, Adams SL, Adamson JE, Smith KF, Smith JF, Tervit HR, Cary SC. 2008. Maintenance of cyanotoxin production by cryopreserved cyanobacteria in the New Zealand culture collection. New Zeal J Mar Fresh. 42(3):277–283.
  • Xia X, Lee P, Cheung S, Lu Y, Liu H. 2020. Discovery of euryhaline phycoerythrobilin-containing Synechococcus and its mechanisms for adaptation to estuarine environments. mSystems. 5(6):e00842-20.
  • Zakar T, Laczko-Dobos H, Toth TN, Gombos Z. 2016. Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci. 7:295.
  • Zheng Q, Wang Y, Xie R, Lang AS, Liu Y, Lu J, Zhang X, Sun J, Suttle CA, Jiao N. 2017. Dynamics of heterotrophic bacterial assemblages within Synechococcus cultures. Appl Environ Microbiol. 84(3):e01517-17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.