915
Views
16
CrossRef citations to date
0
Altmetric
Editorial

Embodied number processing

&

REFERENCES

  • Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction. Neuroreport, 15, 2773–2777.
  • Andres, M., Olivier, E., & Badets, A. (2008). Actions, words, and numbers: A motor contribution to semantic processing? Current Directions in Psychological Science, 17, 313–317. doi:10.1111/j.1467-8721.2008.00597.x
  • Andres, M., & Pesenti, M. (in press). Finger-based representation of mental arithmetic. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition. Oxford: Oxford University Press.
  • Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. Experimental Brain Research, 180, 525–534. doi:10.1007/s00221-007-0870-y
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609.
  • Bloechle, J., Huber, S., & Moeller, K. (2015). In touch with numbers: Embodied and situated effects in number magnitude comparison. Journal of Cognitive Psychology, 27, 478–489. doi:10.1080/20445911.2014.1001760
  • Cohen Kadosh, R., Cohen Kadosh, K., & Henik, A. (2008). When brightness counts: The neuronal correlate of numerical-luminance interference. Cerebral Cortex, 18, 337–343. doi:10.1093/cercor/bhm058
  • Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York, NY: Oxford University Press.
  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–398. doi:10.1016/j.neuron.2007.10.004
  • Fabbri, M., Cancellieri, J., & Natale, V. (2012). The a theory of magnitude (ATOM) model in temporal perception and reproduction tasks. Acta Psychologica, 139, 111–123. doi:10.1016/j.actpsy.2011.09.006
  • Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. Cognitive Processing, 13, 161–164. doi:10.1007/s10339-012-0477-5
  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556. doi:10.1038/nn1066
  • Fischer, M. H., & Hartmann, M. (2014). Pushing forward in embodied cognition: May we mouse the mathematical mind? Frontiers in Psychology, 5, 1315.
  • Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition – From single digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67, 1461–1483. doi:10.1080/17470218.2014.927515
  • Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 61, 825–850. doi:10.1080/17470210701623605
  • Ganor-Stern, D., & Goldman, R. (2015). Reaching towards an end: Numerical end and distance effects in motor movements. Journal of Cognitive Psychology, 27, 490–498. doi:10.1080/20445911.2014.950662
  • Gibson, J. J. (1979). The ecological approach to visual perception (Vol. 40, p. 332). Boston, MA: Houghton Mifflin.
  • Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20, 1–19.
  • Glenberg, A.M., & Kaschak, M.P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558–565. doi:10.3758/BF03196313
  • Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: A review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42, 543–565.
  • Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307. doi:10.1016/S0896-6273(03)00838-9
  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. doi:10.1017/S0140525X01000103
  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448. doi:10.1038/nrn1684
  • Kiesel, A., & Vierck, E. (2008). SNARC-like congruency based on number magnitude and response duration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1–5.
  • Krause, F., Bekkering, H., & Lindemann, O. (2013). A feeling for numbers: Shared metric for symbolic and tactile numerosities. Frontiers in Psychology, 4, 7. doi:10.3389/fpsyg.2013.00007
  • Krause, F., Lindemann, O., Toni, I., & Bekkering, H. (2014). Different brains process numbers differently: Structural bases of individual differences in spatial and nonspatial number representations. Journal of Cognitive Neuroscience, 26, 768–776. doi:10.1093/cercor/bhp063
  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.
  • Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: Numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33, 1400–1409. doi:10.1037/0096-1523.33.6.1400
  • Lindemann, O., & Fischer, M. H. (in press). Cognitive foundations of human number representations and mental arithmetic. The Oxford Handbook of Numerical Cognition.
  • Lindemann, O., Rueschemeyer, S.-A., & Bekkering, H. (2009). Symbols in numbers: From numerals to magnitude information. Behavioral and Brain Sciences, 32, 341–342. doi:10.1017/S0140525X09990550
  • Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48, 788–804. doi:10.1016/j.cortex.2010.11.002
  • Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U., & Nuerk, H.-C. (2012). Learning and development of embodied numerosity. Cognitive Processing, 13, 271–274. doi:10.1007/s10339-012-0457-9
  • Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–B33. doi:10.1016/S0010-0277(01)00142-1
  • Patro, K., Nuerk, H.-C., & Cress, U. (2015). Does your body count? Embodied influences on the preferred counting direction of preschoolers. Journal of Cognitive Psychology, 27, 413–425. doi:10.1080/20445911.2015.1008005
  • Pecher, D., van Dantzig, S., Zwaan, R. A., & Zeelenberg, R. (2009). Language comprehenders retain implied shape and orientation of objects. The Quarterly Journal of Experimental Psychology, 62, 1108–1114. doi:10.1080/17470210802633255
  • Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576–582.
  • Ranzini, M., Lisi, M., Blini, E., Pitteri, M., Treccani, B., Priftis, K., & Zorzi, M. (2015). Larger, smaller, odd or even? Task-specific effects of optokinetic stimulation on the mental number space. Journal of Cognitive Psychology, 27, 459–470. doi:10.1080/20445911.2014.941847
  • Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534–536. doi:10.1126/science.aaa1379
  • Rugani, R., Vallortigara, G., & Regolin, L. (2015). At the root of the left–right asymmetries in spatial–numerical processing: From domestic chicks to human subjects. Journal of Cognitive Psychology, 27, 388–399. doi:10.1080/20445911.2014.941846
  • Rueschemeyer, S., Lindemann, O., van Elk, M., & Bekkering, H. (2009). Embodied cognition: The interplay between automatic resonance and selection-for-action mechanisms. European Journal of Social Psychology, 39, 1180–1187.
  • Rueschemeyer, S., Lindemann, O., van Rooij, D., van Dam, W., & Bekkering, H. (2010). Effects of intentional motor actions on embodied language processing. Experimental Psychology, 57, 260–266.
  • Schuller, A.-M., Hoffmann, D., Goffaux, V., & Schiltz, C. (2015). Shifts of spatial attention cued by irrelevant numbers: Electrophysiological evidence from a target discrimination task. Journal of Cognitive Psychology, 27, 442–458. doi:10.1080/20445911.2014.946419
  • Shaki, S., Sery, N., & Fischer, M. H. (2015). 1 + 2 is more than 2 + 1: Violations of commutativity and identity axioms in mental arithmetic. Journal of Cognitive Psychology, 27, 471–477. doi:10.1080/20445911.2014.973414
  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–250. doi:10.1111/1467-9280.02438
  • Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487. doi:10.1016/S0896-6273(02)00575-5
  • Stapel, J. C., Hunnius, S., Bekkering, H., & Lindemann, O. (2015). The development of numerosity estimation: Evidence for a linear number representation early in life. Journal of Cognitive Psychology, 27, 400–412. doi:10.1080/20445911.2014.995668
  • Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153–181. doi:10.1037/h0046162
  • Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 166–179. doi:10.1037/0278-7393.18.1.166
  • Van Dam, W. O., Rueschemeyer, S.-A., Bekkering, H., & Lindemann, O., (2013). Embodied grounding of memory: Toward the effects of motor execution on memory consolidation. The Quarterly Journal of Experimental Psychology, 66, 2310–2328. doi:10.1080/17470218.2013.777084
  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488. doi:10.1016/j.tics.2003.09.002
  • Walsh, V. (in press). A theory of magnitude: The parts that sum to number. The Oxford Handbook of Numerical Cognition.
  • Wasner, M., Moeller, K., Fischer, M. H., & Nuerk, H.-C. (2015). Related but not the same: Ordinality, cardinality and 1-to-1 correspondence in finger-based numerical representations. Journal of Cognitive Psychology, 27, 426–441. doi:10.1080/20445911.2014.964719
  • Wiemers, M., Bekkering, H., & Lindemann, O. (2014). Spatial interferences in mental arithmetic: Evidence from the motion – Arithmetic compatibility effect. The Quarterly Journal of Experimental Psychology, 67, 1557–1570. doi:10.1080/17470218.2014.889180
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9, 625–636. doi:10.3758/BF03196322
  • Zwaan, R. A., & Taylor, L. J. (2006). Seeing, acting, understanding: Motor resonance in language comprehension. Journal of Experimental Psychology: General, 135(1), 1–11. doi:10.1037/0096-3445.135.1.1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.