127
Views
4
CrossRef citations to date
0
Altmetric
Articles

Grounding Bayesian accounts of numerosity and variability effects in a similarity-based framework: the case of self-organising maps

&
Pages 605-618 | Received 25 Jan 2019, Accepted 18 Jun 2019, Published online: 07 Jul 2019

References

  • Anderson, J. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409–429. doi: 10.1037/0033-295X.98.3.409
  • Chater, N., Oaksford, M., Hahn, U., & Heit, E. (2001). Bayesian models of cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 811–823.
  • Eimas, P., & Quinn, P. (1994). Studies on the formation of perceptually based basic-level categories in young infants. Child Development, 65, 903–917. doi: 10.2307/1131427
  • Frermann, L., & Lapata, M. (2016). Incremental Bayesian category learning from natural language. Cognitive Science, 40, 1333–1381. doi: 10.1111/cogs.12304
  • Gliozzi, V., Althaus, N., Mayor, J., & Plunkett, K. (2013). Primacy/recency effects in infant categorisation. Proceedings of the 35th annual meeting of the cognitive science society, (pp. 2410–2415).
  • Gliozzi, V., Mayor, J., Hu, J., & Plunkett, K. (2009). Labels as features (not names) for infant categorization: A neurocomputational approach. Cognitive Science, 33(4), 709–738. doi: 10.1111/j.1551-6709.2009.01026.x
  • Hubel, D. H. & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148(3), 574–591. doi: 10.1113/jphysiol.1959.sp006308
  • Kohonen, T., Schroeder, M. R., & Huang, T. S. (Eds.). (2001). Self-organizing maps (3rd ed.). Secaucus, NJ: Springer-Verlag New York, Inc.
  • Li, P., Zhao, X., & Mac Whinney, B. (2007). Dynamic self-organization and early lexical development in children. Cognitive Science, 31, 581–612. doi: 10.1080/15326900701399905
  • Li, P., Farkas, I., & MacWhinney, B. (2004). Early lexical development in a self-organizing neural network. Neural Networks, 17, 1345–1362. doi: 10.1016/j.neunet.2004.07.004
  • Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309–332. doi: 10.1037/0033-295X.111.2.309
  • MacKay, D. J. C. (1995). Probable networks and plausible predictions—a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6, 469–505. doi: 10.1088/0954-898X_6_3_011
  • Mayor, J., & Plunkett, K. (2010). A neuro-computational account of taxonomic responding and fast mapping in early word learning. Psychological Review, 117(1), 1–31. doi: 10.1037/a0018130
  • McClelland, J. L. (1998). Connectionist models and bayesian inference. In M. Oaksford & N. Chater (Eds.), Rational models of cognition. Oxford University Press.
  • Medin, D. L., & Schaffer, M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238. doi: 10.1037/0033-295X.85.3.207
  • Miikkulainen, R. (1997). Dyslexic and category-specific aphasic impairments in a self-organizing feature map model of the lexicon. Brain and Language, 59(2), 334–366. doi: 10.1006/brln.1997.1820
  • Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the visual cortex. Springer.
  • Neal, R. M. (1996). Bayesian learning for neural networks. Lecture notes in statistics: 118.
  • Nosofsky, R. (1986). Attention, similarity, and the identification categorization relationship. Journal of Experimental Psychology: General, 115, 39–57. doi: 10.1037/0096-3445.115.1.39
  • Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353–363. doi: 10.1037/h0025953
  • Sanborn, A. N., & Chater, N. (2016). Bayesian brains without probabilities. Trends in Cognitive Sciences, 20(12), 883–893. doi: 10.1016/j.tics.2016.10.003
  • Sanborn, A. N., Griffiths, T. L., & Navarro, D. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117(4), 1144–1167. doi: 10.1037/a0020511
  • Schyns, P. (1991). A modular neural network model of concept acquisition. Cognitive Science, 15, 461–508. doi: 10.1207/s15516709cog1504_1
  • Shepard, R. N. (1987). Toward a universal generalization for psychological science. Science, 237(4820), 1317–1323. doi: 10.1126/science.3629243
  • Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review, 17, 443–464. doi: 10.3758/PBR.17.4.443
  • Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences, 24, 629–641. doi: 10.1017/S0140525X01000061
  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352. doi: 10.1037/0033-295X.84.4.327
  • Westermann, G., & Mareschal, D. (2004). From parts to wholes: Mechanisms of development in infant visual object processing. Infancy, 5, 131–151. doi: 10.1207/s15327078in0502_2
  • Younger, B., & Cohen, L. (1986). Developmental change in infants' perception of correlations among attributes. Child Development, 57, 803–815. doi: 10.2307/1130356
  • Zemel, R., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes. Neural Computation, 10, 403–430. doi: 10.1162/089976698300017818

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.