2,923
Views
2
CrossRef citations to date
0
Altmetric
Articles

Impact of strategy use during N-Back training in older adults

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 715-733 | Received 05 Nov 2019, Accepted 01 Oct 2020, Published online: 18 Oct 2020

References

  • Angel, L., Fay, S., Bouazzaoui, B., Baudouin, A., & Isingrini, M. (2010). Protective role of educational level on episodic memory aging: An event-related potential study. Brain and Cognition, 74(3), 312–323. https://doi.org/10.1016/j.bandc.2010.08.012
  • Army, U. S. (1944). Army individual test battery. Manual of Directions and Scoring.
  • Ashford, J. W., Coburn, K. L., Rose, T. L., & Bayley, P. J. (2011). P300 energy loss in aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 26(s3), 229–238. https://doi.org/10.3233/JAD-2011-0061
  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829. https://doi.org/10.1038/nrn1201
  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation (pp. 47–89). Academic Press.
  • Bailey, H. R., Dunlosky, J., & Hertzog, C. (2014). Does strategy training reduce age-related deficits in working memory? Gerontology, 60(4), 346–356. https://doi.org/10.1159/000356699
  • Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765. https://doi.org/10.1037/a0013494
  • Begum, T., Reza, F., Ahmed, I., & Abdullah, J. M. (2014). Influence of education level on design-induced N170 and P300 components of event related potentials in the human brain. Journal of Integrative Neuroscience, 13(1), 71–88. https://doi.org/10.1142/S0219635214500058
  • Benson, B. L., Anguera, J. A., & Seidler, R. D. (2011). A spatial explicit strategy reduces error but interferes with sensorimotor adaptation. Journal of Neurophysiology, 105(6), 2843–2851. https://doi.org/10.1152/jn.00002.2011
  • Borella, E., Carbone, E., Pastore, M., De Beni, R., & Carretti, B. (2017). Working memory training for healthy older adults: The role of individual characteristics in explaining short-and long-term gains. Frontiers in Human Neuroscience, 11, 99. https://doi.org/10.3389/fnhum.2017.00099
  • Borella, E., Carretti, B., Sciore, R., Capotosto, E., Taconnat, L., Cornoldi, C., & De Beni, R. (2017). Training working memory in older adults: Is there an advantage of using strategies? Psychology and Aging, 32(2), 178–191. https://doi.org/10.1037/pag0000155
  • Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, 63. https://doi.org/10.3389/fnhum.2012.00063
  • Bürki, C. N., Ludwig, C., Chicherio, C., & De Ribaupierre, A. (2014). Individual differences in cognitive plasticity: An investigation of training curves in younger and older adults. Psychological Research, 78(6), 821–835. https://doi.org/10.1007/s00426-014-0559-3
  • Cantarella, A., Borella, E., Carretti, B., Kliegel, M., & de Beni, R. (2017). Benefits in tasks related to everyday life competences after a working memory training in older adults. International Journal of Geriatric Psychiatry, 32(1), 86–93. https://doi.org/10.1002/gps.4448
  • Chen, Y. N., Mitra, S., & Schlaghecken, F. (2008). Sub-processes of working memory in the N-back task: An investigation using ERPs. Clinical Neurophysiology, 119(7), 1546–1559. https://doi.org/10.1016/j.clinph.2008.03.003
  • Christensen, H. (2001). What cognitive changes can be expected with normal ageing? Australian and New Zealand Journal of Psychiatry, 35(6), 768–775. https://doi.org/10.1046/j.1440-1614.2001.00966.x
  • Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33(1), 107–112. https://doi.org/10.1177/001316447303300111
  • Cohen, J., & Polich, J. (1997). On the number of trials needed for P300. International Journal of Psychophysiology, 25(3), 249–255. https://doi.org/10.1016/S0167-8760(96)00743-X
  • Colom, R., Román, F. J., Abad, F., Shih, P. C., Privado, J., Froufe, M., Escorial, S., Martínez, K., Burgaleta, M., Quiroga, MÁ, Karama, S., Haier, R., Thompson, P., & Jaeggi, S. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41(5), 712–727. https://doi.org/10.1016/j.intell.2013.09.002
  • Conroy, M. A., & Polich, J. (2007). Normative variation of P3a and P3b from a large sample: Gender, topography, and response time. Journal of Psychophysiology, 21(1), 22–32. https://doi.org/10.1027/0269-8803.21.1.22
  • Croft, R. J., & Barry, R. J. (1998). EOG correction: A new perspective. Electroencephalography and Clinical Neurophysiology, 107(6), 387–394. https://doi.org/10.1016/S0013-4694(98)00086-8
  • Croft, R. J., & Barry, R. J. (2000). Removal of ocular artifact from the EEG: A review. Neurophysiologie Clinique/Clinical Neurophysiology, 30(1), 5–19. https://doi.org/10.1016/S0987-7053(00)00055-1
  • Delaloye, C., Ludwig, C., Borella, E., Chicherio, C., & De Ribaupierre, A. (2008). L’Empan de lecture comme épreuve mesurant la capacité de mémoire de travail: normes basées sur une population francophone de 775 adultes jeunes et âgés. European Review of Applied Psychology, 58(2), 89–103. https://doi.org/10.1016/j.erap.2006.12.004
  • De Ribaupierre, A., & Lecerf, T. (2006). Relationships between working memory and intelligence from a developmental perspective: Convergent evidence from a neo-Piagetian and a psychometric approach. European Journal of Cognitive Psychology, 18(1), 109–137. https://doi.org/10.1080/09541440500216127
  • Donchin, E. (1986). Cognitive psychophysiology and human information processing. Psychophysiology: Systems, Processes and Applications, 244–267.
  • Drag, L. L., Bieliauskas, L. A., Langenecker, S. A., & Greenfield, L. J. (2010). Cognitive functioning, retirement status, and age: Results from the cognitive changes and retirement among senior surgeons study. Journal of the American College of Surgeons, 211(3), 303–307. https://doi.org/10.1016/j.jamcollsurg.2010.05.022
  • Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Naatanen, R., Polich, J., Reinvang, I., & Van Petten, C. (2009). Event-related potentials in clinical research: Guidelines for 116 eliciting, recording, and quantifying mismatch negativity, P300, and N400. 117. Clinical Neurophysiology, 120(11), 1883–1908. https://doi.org/10.1016/j.clinph.2009.07.045
  • Gevins, A., Smith, M. E., Le, J., Leong, H., Bennett, J., Martin, N., & Whitfield, S. (1996). High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalography and Clinical Neurophysiology, 98(4), 327–348. https://doi.org/10.1016/0013-4694(96)00288-X
  • Guye, S., & Von Bastian, C. C. (2017). Working memory training in older adults: Bayesian evidence supporting the absence of transfer. Psychology and Aging, 32(8), 732. https://doi.org/10.1037/pag0000206
  • Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419. https://doi.org/10.1177/0956797613492984
  • Heinzel, S., Lorenz, R. C., Pelz, P., Heinz, A., Walter, H., Kathmann, N., & Stelzel, C. (2016). Neural correlates of training and transfer effects in working memory in older adults. Neuroimage, 134, 236–249. https://doi.org/10.1016/j.neuroimage.2016.03.068
  • Hering, A., Meuleman, B., Bürki, C., Borella, E., & Kliegel, M. (2017). Improving older adults’ working memory: The influence of age and crystallized intelligence on training outcomes. Journal of Cognitive Enhancement, 1(4), 358–373. https://doi.org/10.1007/s41465-017-0041-4
  • Hertzog, C., McGuire, C. L., & Lineweaver, T. T. (1998). Aging, attributions, perceived control, and strategy use in a free recall task. Aging. Neuropsychology, and Cognition, 5(2), 85–106. https://doi.org/10.1076/anec.5.2.85.601
  • Heslenfeld, D. J.. (2003). Visual mismatch negativity. In J. Polich (Ed.), Detection of change (pp. 41–59). Boston, MA: Springer.
  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833. https://doi.org/10.1073/pnas.0801268105
  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081–10086. https://doi.org/10.1073/pnas.1103228108
  • Jolicœur, P., & Dell’Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36(2), 138–202. https://doi.org/10.1006/cogp.1998.0684
  • Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80(4), 237. https://doi.org/10.1037/h0034747
  • Katz, B., Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2018). The effect of monetary compensation on cognitive training outcomes. Learning and Motivation, 63, 77–90. https://doi.org/10.1016/j.lmot.2017.12.002
  • Kessels, R. P., Van Zandvoort, M. J., Postma, A., Kappelle, L. J., & De Haan, E. H. (2000). The corsi block-tapping task: Standardization and normative data. Applied Neuropsychology, 7(4), 252–258. https://doi.org/10.1207/S15324826AN0704_8
  • Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557–577. https://doi.org/10.1017/S0048577201990559
  • Kramer, A. F., & Strayer, D. L. (1988). Assessing the development of automatic processing: An application of dual-task and event-related brain potential methodologies. Biological Psychology, 26(1-3), 231–267. https://doi.org/10.1016/0301-0511(88)90022-1
  • Kuriyama, K., Mishima, K., Suzuki, H., Aritake, S., & Uchiyama, M. (2008). Sleep accelerates the improvement in working memory performance. Journal of Neuroscience, 28(40), 10145–10150. https://doi.org/10.1523/JNEUROSCI.2039-08.2008
  • Laine, M., Fellman, D., Waris, O., & Nyman, T. J. (2018). The early effects of external and internal strategies on working memory updating training. Scientific Reports, 8(1), 4045. https://doi.org/10.1038/s41598-018-22396-5
  • Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11(11). https://doi.org/10.1371/journal.pmed.1001756
  • Larson, M. J., & Carbine, K. A. (2017). Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor. International Journal of Psychophysiology, 111, 33–41.
  • Li, L., Gratton, C., Fabiani, M., & Knight, R. T. (2013). Age-related frontoparietal changes during the control of bottom-up and top-down attention: An ERP study. Neurobiology of Aging, 34(2), 477–488. https://doi.org/10.1016/j.neurobiolaging.2012.02.025
  • Li, S. C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731. https://doi.org/10.1037/a0014343
  • Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual N-back training increases the capacity of the focus of attention. Psychonomic Bulletin & Review, 20(1), 135–141. https://doi.org/10.3758/s13423-012-0335-6
  • Lindeboom, J., Schmand, B., Tulner, L., Walstra, G., & Jonker, C. (2002). Visual association test to detect early dementia of the Alzheimer type. Journal of Neurology. Neurosurgery & Psychiatry, 73(2), 126–133. https://doi.org/10.1136/jnnp.73.2.126
  • Loosli, S. V., Falquez, R., Unterrainer, J. M., Weiller, C., Rahm, B., & Kaller, C. P. (2016). Training of resistance to proactive interference and working memory in older adults: A randomized double-blind study. International Psychogeriatrics, 28(3), 453–467. https://doi.org/10.1017/S1041610215001519
  • Luck, S. J. (2005). Ten simple rules for designing ERP experiments. Event-related potentials: A methods handbook, 262083337.
  • Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience & Biobehavioral Reviews, 62, 100–108. https://doi.org/10.1016/j.neubiorev.2016.01.003
  • MacPherson, S. E., Phillips, L. H., & Della Sala, S. (2002). Age, executive function and social decision making: A dorsolateral prefrontal theory of cognitive aging. Psychology and Aging, 17(4), 598. https://doi.org/10.1037/0882-7974.17.4.598
  • Meier, M. E., & Kane, M. J. (2013). Working memory capacity and Stroop interference: Global versus local indices of executive control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 748. https://doi.org/10.1037/a0029200
  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270. https://doi.org/10.1037/a0028228
  • Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer” evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512–534. https://doi.org/10.1177/1745691616635612
  • Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. Cambridge University Press.
  • Morrison, A. B., Rosenbaum, G. M., Fair, D., & Chein, J. M. (2016). Variation in strategy use across measures of verbal working memory. Memory & Cognition, 44(6), 922–936. https://doi.org/10.3758/s13421-016-0608-9
  • Neely, A. S., & Bäckman, L. (1995). Effects of multifactorial memory training in old age: Generalizability across tasks and individuals. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 50(3), 134–P140. https://doi.org/10.1093/geronb/50B.3.P134
  • Norman, D. A., & Shallice, T.. (1986). Attention to action. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (pp. 1–18). Boston, MA: Springer.
  • Oelhafen, S., Nikolaidis, A., Padovani, T., Blaser, D., Koenig, T., & Perrig, W. J. (2013). Increased parietal activity after training of interference control. Neuropsychologia, 51(13), 2781–2790. https://doi.org/10.1016/j.neuropsychologia.2013.08.012
  • Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147. https://doi.org/10.7150/ijms.2.147
  • Pergher, V., Shalchy, M. A., Pahor, A., Van Hulle, M. M., Jaeggi, S. M., & Seitz, A. R. (2019). Divergent research methods limit understanding of working memory training. Journal of Cognitive Enhancement, 1–21. https://doi.org/10.1007/s41465-019-00134-7
  • Pergher, V., Wittevrongel, B., Tournoy, J., Schoenmakers, B., & Van Hulle, M. M. (2019). Mental workload of young and older adults gauged with ERPs and spectral power during N-Back task performance. Biological Psychology, 107726. https://doi.org/10.1016/j.biopsycho.2019.107726
  • Pesonen, M., Hämäläinen, H., & Krause, C. M. (2007). Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain Research, 1138, 171–177. https://doi.org/10.1016/j.brainres.2006.12.076
  • Pfefferbaum, A., Rosenbloom, M., Deshmukh, A., & Sullivan, E. V. (2001). Sex differences in the effects of alcohol on brain structure. American Journal of Psychiatry, 158(2), 188–197. https://doi.org/10.1176/appi.ajp.158.2.188
  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
  • Pontifex, M. B., Scudder, M. R., Brown, M. L., O’Leary, K. C., Wu, C. T., Themanson, J. R., & Hillman, C. H. (2010). On the number of trials necessary for stabilization of error-related brain activity across the life span. Psychophysiology, 47(4), 767–773. https://doi.org/10.1111/j.1469-8986.2010.00974.x
  • Raven, J. C. (1938). Raven’s progressive matrices. Western Psychological Services.
  • Reitan, R. M., & Wolfson, D. (1986). The halstead-reitan neuropsychological test battery. In D. Wedding, A. M. Horton, Jr., & J. S. Webster (Eds.), The neuropsychology handbook: Behavioral and clinical perspectives (p. 134–160). Springer Publishing Co.
  • Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26(4), 813. https://doi.org/10.1037/a0023631
  • Ross, T. P., Calhoun, E., Cox, T., Wenner, C., Kono, W., & Pleasant, M. (2007). The reliability and validity of qualitative scores for the controlled oral word association test. Archives of Clinical Neuropsychology, 22(4), 475–488. https://doi.org/10.1016/j.acn.2007.01.026
  • Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., & Passingham, R. E. (2000). The prefrontal cortex: Response selection or maintenance within working memory? Science, 288(5471), 1656–1660. https://doi.org/10.1126/science.288.5471.1656
  • Ruchkin, D. S., Canoune, H. L., Johnson Jr, R., & Ritter, W. (1995). Working memory and preparation elicit different patterns of slow wave event-related brain potentials. Psychophysiology, 32(4), 399–410. https://doi.org/10.1111/j.1469-8986.1995.tb01223.x
  • Ruff, R. M., & Parker, S. B. (1993). Gender-and age-specific changes in motor speed and eye-hand coordination in adults: Normative values for the finger tapping and grooved pegboard tests. Perceptual and Motor Skills, 76(3_suppl), 1219–1230. https://doi.org/10.2466/pms.1993.76.3c.1219
  • Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23(1), 9–20. https://doi.org/10.1016/j.tics.2018.10.004
  • Salmi, J., Vilà-Balló, A., Soveri, A., Rostan, C., Rodríguez-Fornells, A., Lehtonen, M., & Laine, M. (2019). Working memory updating training modulates a cascade of event-related potentials depending on task load. Neurobiology of Learning and Memory, 166, 107085. https://doi.org/10.1016/j.nlm.2019.107085
  • Sánchez-Cubillo, I., Perianez, J. A., Adrover-Roig, D., Rodriguez-Sanchez, J. M., Rios-Lago, M., Tirapu, J. E. E. A., & Barcelo, F. (2009). Construct validity of the trail making test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(3), 438–450. https://doi.org/10.1017/S1355617709090626
  • Sanders, R. E., Murphy, M. D., Schmitt, F. A., & Walsh, K. K. (1980). Age differences in free recall rehearsal strategies. Journal of Gerontology, 35(4), 550–558. https://doi.org/10.1093/geronj/35.4.550
  • Scharinger, C., Soutschek, A., Schubert, T., & Gerjets, P. (2017). Comparison of the working memory load in n-back and working memory span tasks by means of EEG frequency band power and P300 amplitude. Frontiers in Human Neuroscience, 11, 6. https://doi.org/10.3389/fnhum.2017.00006
  • Scullin, M. K., Trotti, L. M., Wilson, A. G., Greer, S. A., & Bliwise, D. L. (2012). Nocturnal sleep enhances working memory training in Parkinson’s disease but not Lewy body dementia. Brain, 135(9), 2789–2797. https://doi.org/10.1093/brain/aws192
  • Shah, P., & Miyake, A. (1999). Models of working memory–an introduction.
  • Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186. https://doi.org/10.1177/1529100616661983
  • Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin & Review, 24(4), 1077–1096. https://doi.org/10.3758/s13423-016-1217-0
  • Steffensen, S. C., Ohran, A. J., Shipp, D. N., Hales, K., Stobbs, S. H., & Fleming, D. E. (2008). Gender-selective effects of the P300 and N400 components of the visual evoked potential. Vision Research, 48(7), 917–925. https://doi.org/10.1016/j.visres.2008.01.005
  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643. https://doi.org/10.1037/h0054651
  • Teixeira-Santos, A. C., Moreira, C. S., Magalhães, R., Magalhães, C., Pereira, D. R., Leite, J., Carvalho, S., & Sampaio, A. (2019). Reviewing working memory training gains in healthy older adults: A meta-analytic review of transfer for cognitive outcomes. Neuroscience & Biobehavioral Reviews, 103, 163–177. https://doi.org/10.1016/j.neubiorev.2019.05.009
  • Vilà-Balló, A., Salmi, J., Soveri, A., Rodríguez-Fornells, A., Lehtonen, M., & Laine, M. (2018). Neural signatures for active maintenance and interference during working memory updating. Biological Psychology, 132, 233–243. https://doi.org/10.1016/j.biopsycho.2018.01.007
  • Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44(1), 121–133. https://doi.org/10.1016/j.neuron.2004.08.031
  • Watter, S., Geffen, G. M., & Geffen, L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology, 38(6), 998–1003. https://doi.org/10.1111/1469-8986.3860998
  • Wechsler, D. (1955). Manual for the Wechsler adult intelligence scale.
  • Wiederholt, W. C., Cahn, D., Butters, N. M., Salmon, D. P., Kritz-Silverstein, D., & Barrett-Connor, E. (1993). Effects of age, gender and education on selected neuropsychological tests in an elderly community cohort. Journal of the American Geriatrics Society, 41(6), 639–647. https://doi.org/10.1111/j.1532-5415.1993.tb06738.x
  • Wolfe, J. M. (1998). Visual search. Attention, 1, 13–73.
  • Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304. https://doi.org/10.1037/a0032982