1,324
Views
3
CrossRef citations to date
0
Altmetric
Articles

Modelling and performance prediction of a centrifugal cargo pump on a chemical tanker

ORCID Icon &
Pages 278-290 | Received 27 Nov 2017, Accepted 31 Aug 2019, Published online: 12 Sep 2019

References

  • Allen DM. 1971. Mean square error of prediction as a criterion for selecting variables. Technometrics. 13(3):469–475. doi: 10.1080/00401706.1971.10488811
  • An Z, Zhounian L, Peng W, Linlin C, Dazhuan W. 2016. Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm. Eng Optim. 48(7):1251–1274. doi: 10.1080/0305215X.2015.1104987
  • Armstrong JS, Collopy F. 1992. Error measures for generalizing about forecasting methods empirical comparisons. Int J Forecast. 8(1):69–80. doi: 10.1016/0169-2070(92)90008-W
  • Azadeh A, Ebrahimipour V, Bavar P. 2010. A fuzzy inference system for pump failure diagnosis to improve maintenance process: The case of a petrochemical industry. Expert Syst Appl. 37(1):627–639. doi: 10.1016/j.eswa.2009.06.018
  • Azadeh A, Saberi M, Kazem A, Ebrahimipour V, Nourmohammadzadeh A, Saberi Z. 2013. A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. Appl Soft Comput. 13(3):1478–1485. doi: 10.1016/j.asoc.2012.06.020
  • Bachus L, Custodio A. 2003. Know and understand centrifugal pumps. Oxford: Elsevier. ISBN-13: 978-1856174091.
  • Benini E, Cenzon M. 2009. Calibration of a meanline centrifugal pump model using evolutionary algorithms. J Power Energy. 223(7):835–847. doi: 10.1243/09576509JPE742
  • Bluman AG. 2000. Elementary statistics. New York: McGraw Hill.
  • Derakhshan S, Bashiri M. 2018. Investigation of an efficient shape optimization procedure for centrifugal pump impeller using eagle strategy algorithm and ANN (case study: slurry flow). Struct Multidiscipl Optim, 1-15.
  • Derakhshan S, Pourmahdavi M, Abdolahnejad E, Reihani A, Ojaghi A. 2013. Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm. Comput Fluids. 81:145–151. doi: 10.1016/j.compfluid.2013.04.018
  • Dreyfus G. 2005. Neural networks: methodology and applications. Berlin: Springer Science & Business Media.
  • Durmusoglu Y, Kocak G, Deniz C, Zincir B. 2015. Energy efciency analysis of pump systems in a ship power plant and a case study of a container ship. Opatija: IAMU 16th AGA.
  • Ertoz Ö. 2003. Energy efficiency in pumps. In: 6th National Installations Engineering and Congress; Istanbul.
  • IMO. 2016. International code for the construction and equipment of ships carrying dangerous chemicals in bulk (IBC Code), 2016 Edition (ID100E), ISBN 978-92-801-1595-6 (9789280115956).
  • Kaya D, Yagmur EA, Yigit KS, Kilic FC, Eren AS, Celik C. 2008. Energy efficiency in pumps. Energy Convers Manage. 49(6):1662–1673. doi: 10.1016/j.enconman.2007.11.010
  • Khataee AR, Kasiri MB. 2010. Artificial neural networks modeling of contaminated water treatment process by homogeneous and heterogeneous nanocatalysis. J Mol Catal A: Chem. 331, 86–100. doi: 10.1016/j.molcata.2010.07.016
  • Kocak G, Durmusoglu Y. 2017. Energy efficiency analysis of a ship’s central cooling system using variable speed pump. J Marine Eng Technol. DOI:10.1080/20464177.2017.1283192.
  • Köseoğlu B. 2015. Port modeling and applying optimization techniques (book in Turkish). İzmir: Dokuz Eylul University.
  • Lomakin VO, Chaburko PS, Kuleshova MS. 2017. Multi-criteria optimization of the flow of a centrifugal pump on energy and vibroacoustic characteristics. Procedia Eng. 176:476–482. doi: 10.1016/j.proeng.2017.02.347
  • Makridakis S, Wheelwright S, Hyndman R. 1998. Forecasting methods and applications. 3rd edn. New York, NY: Wiley.
  • Mathworks. 2018. Simulation and model-based design, [accessed 2017 October 22]. https://www.mathworks.com/products/simulink.html.
  • Najafi A, Nowruzi H, Ghassemi H. 2018. Performance prediction of hydrofoil-supported catamarans using experiment and ANNs. Appl Ocean Res. 75:66–84. doi: 10.1016/j.apor.2018.02.017
  • Nourbakhsh A, Safikhani H, Derakhshan S. 2011. The comparison of multi-objective particle swarm optimization and NSGA II algorithm: applications in centrifugal pumps. Eng Optim. 43(10):1095–1113. doi: 10.1080/0305215X.2010.542811
  • Nowruzi H, Ghassemi H, Ghiasi M. 2017. Performance predicting of 2D and 3D submerged hydrofoils using CFD and ANNs. J Mar Sci Technol. 22(4):710–733. doi: 10.1007/s00773-017-0443-0
  • Olszewski P. 2016. Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps. Appl Energy. 178:527–539. doi: 10.1016/j.apenergy.2016.06.084
  • Oztemel E. 2016. Artificial neural networks (book in Turkish). 4th ed. İstanbul: Ozkaracan Publishing, Papatya Bilim.
  • Pillon LZ. 2007. Interfacial properties of petroleum products. Boca Raton, FL: CRC Press.
  • Sakar C, Zorba Y. 2013. Operational efficiency at chemical tankers (book in Turkish). İstanbul: Beta Publishing.
  • Sakthivel NR, Nair BB, Sugumaran V. 2012. Soft computing approach to fault diagnosis of centrifugal pump. Appl Soft Comput. 12(5):1574–1581. doi: 10.1016/j.asoc.2011.12.009
  • Sakthivel NR, Sugumaran V, Babudevasenapati S. 2010. Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Syst Appl. 37(6):4040–4049. doi: 10.1016/j.eswa.2009.10.002
  • Shora MM, Ghassemi H, Nowruzi H. 2018. Using computational fluid dynamic and artificial neural networks to predict the performance and cavitation volume of a propeller under different geometrical and physical characteristics. J Marine Eng Technol. 17(2):59–84. doi: 10.1080/20464177.2017.1300983
  • Su Z, Tang B, Liu Z, Qin Y. 2015. Multi-fault diagnosis for rotating machinery based on orthogonal supervised linear local tangent space alignment and least square support vector machine. Neurocomputing. 157:208–222. doi: 10.1016/j.neucom.2015.01.016
  • Taghva HR, Ghassemi H, Nowruzi H. 2018. Seakeeping performance estimation of the container ship under irregular wave condition using artificial neural network. Am J Civil Eng Architecture. 6(4):147–153. doi: 10.12691/ajcea-6-4-3
  • Wang C, Shi W, Wang X, Jiang X, Yang Y, Li W, Zhou L. 2017. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Appl Energy. 187:10–26. doi: 10.1016/j.apenergy.2016.11.046
  • Wu P, Lai Z, Wu D, Wang L. 2014. Optimization research of parallel pump system for improving energy efficiency. J Water Res Planning Manage. 141(8):04014094. doi: 10.1061/(ASCE)WR.1943-5452.0000493
  • Yumurtaci Z, Sarıgul A. 2011. Energy efficiency of centrifugal pumps and its applications (paper in Turkish). Makina Mühendisleri Odası Tesisat Mühendisliği Dergisi. 122:49–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.