635
Views
2
CrossRef citations to date
0
Altmetric
Articles

A numerical study on flow field and maneuvering derivatives of KVLCC2 model at drift condition

ORCID Icon, ORCID Icon &
Pages 52-63 | Received 04 Dec 2017, Accepted 04 Sep 2019, Published online: 21 Oct 2019

References

  • Abbas N, Kornev N. 2016. Validation of hybrid URANS/LES methods for determination of forces and wake parameters of KVLCC2 tanker at manoeuvring conditions. Ship Technol Res. 63(2):96–109. doi: 10.1080/09377255.2016.1157275
  • Degani D, Seginer A, Levy Y. 1990. Graphical visualization of vortical flows by means of helicity. AIAA J. 28(8):1347–1352. doi: 10.2514/3.25224
  • Feng SB, Zou ZJ, Zou L. 2015. Numerical calculation of hydrodynamic forces on a KVLCC2 hull-rudder system in oblique motion. J Shanghai Jiaotong Univ. 49(4):470–474.
  • Fureby C, Toxopeus SL, Johansson M, Tormalm M, Petterson K. 2016. A computational study of the flow around the KVLCC2 model hull at straight ahead conditions and at drift. Ocean Eng. 118:1–16. doi: 10.1016/j.oceaneng.2016.03.029
  • He S, Kellett P, Yuan ZM, Incecik A, Turan O, Boulougouris E. 2016. Manoeuvring prediction based on CFD generated derivatives. J Hydrodyn Ser B. 28(2):284–292. doi: 10.1016/S1001-6058(16)60630-3
  • Hunt JCR, Wray AA, Moin P. 1988. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report. CTR–S88.
  • Jin YT, Duffy J, Chai SH, Chin C, Bose N. 2016. URANS study of scale effects on hydrodynamic manoeuvring coefficients of KVLCC2. Ocean Eng. 118:93–106. doi: 10.1016/j.oceaneng.2016.03.022
  • Kamkar SJ, Jameson A, Wissink AM, Sankaran V. 2010. Feature-driven cartesian adaptive mesh refinement in the helios code. Paper presented at: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. p. 2010–2171.
  • Kume K, Hasegawa J, Tsukada Y, Fujisawa J, Fukasawa R, Hinatsu M. 2006. Measurements of hydrodynamic forces, surface pressure, and wake for obliquely towed tanker model and uncertainty analysis for CFD validation. J Mar Sci Technol. 11(2):65–75. doi: 10.1007/s00773-005-0209-y
  • Meng Q-J, Wan D-C. 2016. Numerical simulations of viscous flow around the obliquely towed KVLCC2M model in deep and shallow water. J Hydrodyn Ser B. 28(3):506–518. doi: 10.1016/S1001-6058(16)60655-8
  • Menter FR. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8):1598–1605. doi: 10.2514/3.12149
  • Park D-M, Lee J, Kim Y. 2015. Uncertainty analysis for added resistance experiment of KVLCC2 ship. Ocean Eng. 95:143–156. doi: 10.1016/j.oceaneng.2014.12.007
  • Pereira FS, Eça L, Vaz G. 2017. Verification and validation exercises for the flow around the KVLCC2 tanker at model and full-scale Reynolds numbers. Ocean Eng. 129:133–148. doi: 10.1016/j.oceaneng.2016.11.005
  • Sadat-Hosseini H, Wu P-C, Carrica PM, Kim H, Toda Y, Stern F. 2013. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Eng. 59:240–273. doi: 10.1016/j.oceaneng.2012.12.016
  • Stern F, Wang ZY, Yang JM, Sadat-Hosseini H, Mousaviraad M, Bhushan S, Diez M, Sung-Hwan Y, Wu P-C, Yeon SM, et al. 2015. Recent progress in cfd for naval architecture and ocean engineering. J Hydrodyn Ser B. 27(1):1–23. doi: 10.1016/S1001-6058(15)60452-8
  • Tian XM, Zou ZJ, Wang HM. 2010. Computation of the viscous flow and hydrodynamic forces on a KVLCC2 model in oblique motion. J Ship Mech. 14(8):834–840.
  • Toxopeus SL, Simonsen CD, Guilmineau E, Visonneau M, Xing T, Stern F. 2013. Investigation of water depth and basin wall effects on KVLCC2 in manoeuvring motion using viscous-flow calculations. J Mar Sci Technol. 18(4):471–496. doi: 10.1007/s00773-013-0221-6
  • Turnock SR, Phillips AB, Furlong M. 2008. URANS simulations of static drift and dynamic manoeuvres of the KVLCC2 tanker. Paper presented at: Proceedings of the workshop on verification and validation of ship manoeuvring simulation methods (SIMMAN 2008). p. 13–17.
  • Van Hoydonck W, Toxopeuse S, Eloot K, Bhawsinka K, Queutey P, Visonneau M. 2019. Bank effects for KVLCC2. J Mar Sci Technol. 24(1):174–199. doi: 10.1007/s00773-018-0545-3
  • Wang XQ, Liu HX, Ma S, Guo C. 2017. Investigation of the hydrodynamic model test of forced rolling for a barge using PIV. Chin J Ship Res. 12(2):49–56.
  • Wang H-M, Zou Z-J, Tian X-M. 2009. Computation of the viscous hydrodynamic forces on a KVLCC2 model moving obliquely in shallow water. J Shanghai Jiaotong Univ. 14(2):241–244. doi: 10.1007/s12204-009-0241-x
  • Wu XH, Liu ZY, Shi SD, et al. 2005. Ship maneuverability. Beijing: National Defence Industry press.
  • Xing T, Bhushan S, Stern F. 2012. Vortical and turbulent structures for KVLCC2 at drift angle 0, 12, and 30 degrees. Ocean Eng. 55:23–43. doi: 10.1016/j.oceaneng.2012.07.026
  • Yakhot V, Orzag SA. 1986. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput. 1(1):3–51. doi: 10.1007/BF01061452
  • Yang X, Yin Y, Lian JJ. 2019. Numerical study on the hydrodynamic performance of the semi-spade rudder and propeller. Adv. Mech. Eng. 11(1):1–18.
  • Yasukawa H, Yoshimura Y. 2015. Introduction of MMG standard method for ship maneuvering predictions. J Mar Sci Technol. 20(1):37–52. doi: 10.1007/s00773-014-0293-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.