205
Views
0
CrossRef citations to date
0
Altmetric
Articles

Cost-benefit analysis of emission reduction techniques: a case for container vessel

, & ORCID Icon
Pages 259-269 | Received 08 Jun 2022, Accepted 07 Feb 2024, Published online: 16 Feb 2024

References

  • Abadie LM, Goicoechea N. 2019. Powering newly constructed vessels to comply with ECA regulations under fuel market prices uncertainty: diesel or dual fuel engine? Transp Res Part D Transp Environ. 67:433–448. doi:10.1016/j.trd.2018.12.012.
  • Abadie LM, Goicoechea N, Galarraga I. 2017. Adapting the shipping sector to stricter emissions regulations: fuel switching or installing a scrubber? Transp Res Part D Transp Environ. 57:237–250. doi:10.1016/j.trd.2017.09.017.
  • Abdon A, Zhang X, Parra D, Patel MK, Bauer C, Worlitschek J. 2017. Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales. Energy. 139:1173–1187. doi:10.1016/j.energy.2017.07.097.
  • ABS. 2020. Ammonia as marine fuel. NH3 Fuel Conference.
  • Ammar NR. 2019. An environmental and economic analysis of methanol fuel for a cellular container ship. Transp Res Part D Transp Environ. 69:66–76. doi:10.1016/j.trd.2019.02.001.
  • Ammar NR, Seddiek IS. 2017. Eco-environmental analysis of ship emission control methods: case study RO-RO cargo vessel. Ocean Eng. 137:166–173. doi:10.1016/j.oceaneng.2017.03.052.
  • Brynolf S, Magnusson M, Fridell E, Andersson K. 2014. Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels. Transp Res Part D Transp Environ. 28:6–18. doi:10.1016/j.trd.2013.12.001.
  • Caiazzo G, Langella G, Miccio F, Scala F. 2012. An experimental investigation on seawater SO2 scrubbing for marine application. Environ Prog Sustain Energy. 32:1179–1186. doi:10.1002/ep.11723.
  • CE Delft. 2023. Handboek Milieuprijzen 2023.
  • Clarkson Research Services Limited. 2020. World Fleet Register.
  • Corbett JJ, Thomson James Winebrake HJ, Manager P, Yuska D. 2014. Natural gas for waterborne freight transport: a life cycle emissions assessment with case studies.
  • Deng J, Wang X, Wei Z, Wang L, Wang C, Chen Z. 2021. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci Total Environ 766:144319. doi:10.1016/j.scitotenv.2020.144319.
  • Doug W. 2010. Dual-fuel and gas engines, pounder’s marine diesel engines and gas turbines. 9th ed. Oxford: Butterworth-Heinemann.
  • Ejder E, Arslanoğlu Y. 2022. Evaluation of ammonia fueled engine for a bulk carrier in marine decarbonization pathways. J Clean Prod. 379:134688. doi:10.1016/j.jclepro.2022.134688.
  • Eriksson L, Llamas X. 2020. Robustness analysis of dual actuator EGR controllers in marine two-stroke diesel engines. J Mar Eng Technol. 19:17–30. doi:10.1080/20464177.2020.1712065.
  • Estevez R, López-Tenllado FJ, Aguado-Deblas L, Bautista FM, Romero AA, Luna D. 2023. Current research on green ammonia (NH3) as a potential vector energy for power storage and engine fuels: a review. Energies 16:5451. doi:10.3390/en16145451.
  • Exhaust Gas Cleaning Systems Association. 2012. A practical guide to exhaust gas cleaning systems for the maritime industry. EGCSA Handbook, London UK.
  • Fan H, Tu H, Enshaei H, Xu X, Wei Y. 2021. Comparison of the economic performances of three sulphur oxides emissions abatement solutions for a Very Large Crude Carrier (VLCC). J Mar Sci Eng. 9:221. doi:10.3390/jmse9020221.
  • Fan L, Gu B, Luo M. 2020. A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: a container route through the Chinese SECA case. Transp Policy. 99:336–344. doi:10.1016/j.tranpol.2020.09.008.
  • Green Shipping Programme. 2021. Ammonia as a marine fuel safety handbook 2, 1–28.
  • Harahap F, Nurdiawati A, Conti D, Leduc S, Urban F. 2023. Renewable marine fuel production for decarbonised maritime shipping: pathways, policy measures and transition dynamics. J Clean Prod. 415:137906. doi:10.1016/j.jclepro.2023.137906.
  • Iannaccone T, Landucci G, Tugnoli A, Salzano E, Cozzani V. 2020. Sustainability of cruise ship fuel systems: comparison among LNG and diesel technologies. J Clean Prod. 260:121069. doi:10.1016/j.jclepro.2020.121069.
  • IMO. 1997. International Maritime Organization, Annex VI of Marpol 73/78: Regulations for the prevention of air pollution from ships and Nox technical Code. London, UK.
  • IMO. 2018a. International Maritime Organization, Implementation of Suphur 2020 limit – carriage ban adopted. Mepc, vol. 7. London, UK.
  • IMO. 2018b. International Maritime Organization, Initial IMO strategy on reduction of GHG emissions from ships.
  • IMO. 2019. International Maritime Organization, The 2020 global sulphur limit: FAQ. Int Marit Organ 1–5.
  • IMO. 2020. International Maritime Organization, Fourth IMO GHG study, 2020.
  • Inal OB, Zincir B, Deniz C. 2022. Investigation on the decarbonization of shipping: an approach to hydrogen and ammonia. Int J Hydrogen Energy. 47:19888–19900. doi:10.1016/j.ijhydene.2022.01.189.
  • Jayaram V, Nigam A, Welch WA, Miller JW, Cocker DR. 2011. Effectiveness of emission control technologies for auxiliary engines on ocean-going vessels. J Air Waste Manag Assoc. 61:14–21. doi:10.3155/1047-3289.61.1.14.
  • Jiang L, Kronbak J, Christensen LP. 2014. The costs and benefits of sulphur reduction measures: sulphur scrubbers versus marine gas oil. Transp Res Part D Transp Environ. 28:19–27. doi:10.1016/j.trd.2013.12.005.
  • Kim AR, Seo YJ. 2019. The reduction of SOx emissions in the shipping industry: the case of Korean companies. Mar Policy. 100:98–106. doi:10.1016/j.marpol.2018.11.024.
  • Korean Register. 2018. Guide to strengthened global SOx regulation. https://www.krs.co.kr/eng/.
  • Lee C. 2017. Performance evaluation of a urea-selective catalytic reduction system in a marine diesel engine. Proc Inst Mech Eng Part M J Eng Marit Environ. 231:801–808. doi:10.1177/1475090216667238.
  • Lee HJ, Yoo SH, Huh SY. 2020. Economic benefits of introducing LNG-fuelled ships for imported flour in South Korea. Transp Res Part D Transp Environ. 78:102220. doi:10.1016/j.trd.2019.102220.
  • Li K, Wu M, Gu X, Yuen KF, Xiao Y. 2020. Determinants of ship operators’ options for compliance with IMO 2020. Transp Res Part D Transp Environ. 86:102459. doi:10.1016/j.trd.2020.102459.
  • Lindstad H, Sandaas I, Strømman AH. 2015. Assessment of cost as a function of abatement options in maritime emission control areas. Transp Res Part D Transp Environ. 38:41–48. doi:10.1016/j.trd.2015.04.018.
  • Lindstad HE, Rehn CF, Eskeland GS. 2017. Sulphur abatement globally in maritime shipping. Transp Res Part D Transp Environ. 57:303–313. doi:10.1016/j.trd.2017.09.028.
  • Liu L, Wu Y, Wang Y. 2022. Numerical investigation on the combustion and emission characteristics of ammonia in a low-speed two-stroke marine engine. Fuel. 314:122727. doi:10.1016/j.fuel.2021.122727.
  • Lloyd’s Register. 2021. Exhaust gas cleaning systems: guidelines for the management of consumables and waste products. https://www.egcsa.com/wp-content/uploads/EGCSA-Handbook-2012-A5-size-.pdf.
  • Magnusson M, Fridell E, Ingelsten HH. 2012. The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Appl Catal B Environ. 111–112:20–26. doi:10.1016/j.apcatb.2011.09.010.
  • MAN Energy Solutions. 2018. 11.000 teu container vessel. An ME-GI powered vessel fitted with fuel gas supply system and boil-off gas handling. https://www.man-es.com/docs/default-source/document-sync/11-000-teu-container-vessel-eng.pdf?sfvrsn=9d6e1e01_2.
  • Nadimi E, Przybyła G, Lewandowski MT, Adamczyk W. 2023. Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine. J Energy Inst 107:101158. doi:10.1016/j.joei.2022.101158.
  • Ni P, Wang X, Li H. 2020. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. Fuel 279:118477. doi:10.1016/j.fuel.2020.118477.
  • Niels de Vries. 2019. Safe and effective application of ammonia as a marine fuel.
  • Panasiuk I, Turkina L. 2015. The evaluation of investments efficiency of SOx scrubber installation. Transp Res Part D Transp Environ. 40:87–96. doi:10.1016/j.trd.2015.08.004.
  • Pavlenko N, Comer B, Zhou Y, Clark N, Rutherford D. 2020. The climate implications of using LNG as a marine fuel. https://theicct.org/sites/default/files/publications/Climate_implications_LNG_marinefuel_01282020.pdf.
  • Qiu Y, Yuan C, Tang J, Tang X. 2019. Techno-economic analysis of PV systems integrated into ship power grid: a case study. Energy Convers Manag. 198:111925. doi:10.1016/j.enconman.2019.111925.
  • Schinas O, Stefanakos CN. 2014. Selecting technologies towards compliance with MARPOL Annex VI: the perspective of operators. Transp Res Part D Transp Environ. 28:28–40. doi:10.1016/j.trd.2013.12.006.
  • Seddiek IS, Ammar NR. 2023. Technical and eco-environmental analysis of blue/green ammonia-fueled RO/RO ships. Transp Res D Transp Environ. 114:103547. doi:10.1016/j.trd.2022.103547.
  • Seddiek IS, Elgohary MM. 2014. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. Int J Nav Archit Ocean Eng. 6:737–748. doi:10.2478/IJNAOE-2013-0209.
  • Ship & Bunker. 2024. Average bunker prices. [accessed 2024 Mar 1]. https://shipandbunker.com/prices/av.
  • Silva RA, West JJ, Lamarque J-F, Shindell DT, Collins WJ, Dalsoren S, Faluvegi G, Folberth G, Horowitz LW, Nagashima T, et al. 2016. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos Chem Phys. 16:9847–9862. doi:10.5194/acp-16-9847-2016.
  • S&P. 2024. Interactive: Ammonia price chart | S&P Global Commodity Insights. [accessed 2024 April 1]. https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/051023-interactive-ammonia-price-chart-natural-gas-feedstock-europe-usgc-black-sea.
  • The Royal Society. 2020. Ammonia: zero-carbon fertiliser, fuel and energy store. The Royal Society London, UK.
  • Trivyza NL, Rentizelas A, Theotokatos G. 2018. A novel multi-objective decision support method for ship energy systems synthesis to enhance sustainability. Energy Convers Manage. 168:128–149. doi:10.1016/j.enconman.2018.04.020.
  • Trozzi C. 2010. Emission estimate methodology for maritime navigation. 9th International Emissions Inventory Conference, San Antonio, Texas.
  • UNCTAD. 2017. Review of maritime transport 2017. United Nations 1–25. doi:10.18356/e9e3b605-en.
  • Vanhamme E. 2016. Assessment of fuel oil availability final report. July.
  • Van Rheenen ES, Padding JT, Slootweg JC, Visser K. 2023. Hydrogen carriers for zero-emission ship propulsion using PEM fuel cells: an evaluation. J Mar Eng Technol 1–18. doi:10.1080/20464177.2023.2282691.
  • Wärtsilä. 2014. Wärtsilä gas-fired engines. https://www.wartsila.com/docs/default-source/energy-docs/technology-products/brochures/gas-and-multi-fuel-power-plants.pdf?sfvrsn=6f4dbb45_22.
  • Woo SH, Raza H, Kang WM, Choe SB, Im MH, Lim KS, Nam JG, Kim H. 2023. An ammonia supplying system using ammonium salt to reduce the NOx emissions of a 1.1 MW marine engine. J Mar Eng Technol. 22:45–54. doi:10.1080/20464177.2022.2127402.
  • Wu P-C, Lin C-Y. 2020. Cost-benefit evaluation on promising strategies in compliance with low sulfur policy of IMO. J Mar Sci Eng. 9:3. doi:10.3390/jmse9010003.
  • Wu Y, Chen A, Xiao H, Jano-Ito M, Alnaeli M, Alnajideen M, Mashruk S, Valera-Medina A. 2023. Emission reduction and cost-benefit analysis of the use of ammonia and green hydrogen as fuel for marine applications. Green Energy Resour. 1:100046. doi:10.1016/j.gerr.2023.100046.
  • Yang ZL, Zhang D, Caglayan O, Jenkinson ID, Bonsall S, Wang J, Huang M, Yan XP. 2012. Selection of techniques for reducing shipping NOx and SOx emissions. Transp Res Part D Transp Environ. 17:478–486. doi:10.1016/j.trd.2012.05.010.
  • Zanobetti F, Pio G, Jafarzadeh S, Muñoz Ortiz M, Cozzani V. 2023. Decarbonization of maritime transport: sustainability assessment of alternative power systems. J Clean Prod. 417:137989. doi:10.1016/j.jclepro.2023.137989.
  • Zhu J, Zhou D, Yang W, Qian Y, Mao Y, Lu X. 2023. Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy. Energy. 263:125748. doi:10.1016/j.energy.2022.125748.
  • Zhu M, Li KX, Lin KC, Shi W, Yang J. 2020. How can shipowners comply with the 2020 global sulphur limit economically? Transp Res Part D Transp Environ. 79:102234. doi:10.1016/j.trd.2020.102234.
  • Zis T, Angeloudis P, Bell MGH, Psaraftis HN. 2016. Payback period for emissions abatement alternatives: role of regulation and fuel prices. Transp Res Rec J Transp Res Board. 2549:37–44. doi:10.3141/2549-05.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.