98
Views
0
CrossRef citations to date
0
Altmetric
Articles

A deep learning approach to analyse ship inspection reports via natural language processing integrated with artificial neural network

ORCID Icon &
Pages 291-304 | Received 22 Mar 2024, Accepted 06 May 2024, Published online: 16 May 2024

References

  • Ahmed N, Ahammed R, Islam MM, Uddin MA, Akhter A, Talukder MAA, Paul BK. 2021. Machine learning based diabetes prediction and development of smart web application. Int J Cogn Comput Eng. 2:229–241. doi:10.1016/j.ijcce.2021.12.001.
  • Akyuz E, Celik M. 2014. Utilisation of cognitive map in modelling human error in marine accident analysis and prevention. Saf Sci. 70:19–28. doi:10.1016/j.ssci.2014.05.004.
  • Alaloul WS, Musarat MA, Liew MS, Qureshi AH, Maqsoom A. 2021. Investigating the impact of inflation on labour wages in Construction Industry of Malaysia. Ain Shams Eng J. 12:1575–1582. doi:10.1016/j.asej.2020.08.036.
  • American Bureau of Shipping (ABS). n.d. https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/other/142_investigationofmarineincidents/pub142_analysis_map.pdf [WWW Document].
  • Asteris PG, Mokos VG. 2020. Concrete compressive strength using artificial neural networks. Neural Comput Appl. 32:11807–11826. doi:10.1007/s00521-019-04663-2.
  • Aydın O, Celik M, Bicen S, Bayer D. 2022. Systematic analysis of multi-source inspection database via ship smart audit system. Trans Marit Sci. 11. doi:10.7225/toms.v11.n02.w01.
  • Benbarrad T, Salhaoui M, Kenitar SB, Arioua M. 2021. Intelligent machine vision model for defective product inspection based on machine learning. J Sens Actuator Netw. 10:7. doi:10.3390/jsan10010007.
  • Bicen S, Celik M. 2022a. A bibliometric review on maritime inspection analysis: Current and future insights. doi:10.1177/14750902221119341.
  • Bicen S, Celik M. 2022b. A hybrid approach to near-miss report investigation towards next-generation safety solutions on-board ships. Ocean Eng. 266:112768. doi:10.1016/j.oceaneng.2022.112768.
  • Bolat F, Alpaslan S. 2021. Cumulative analysis of port state control based on Paris MOU inspections. Trans Marit Sci. 10:224–246. doi:10.7225/toms.v10.n01.019.
  • Bouzary H, Chen FF, Shahin M. 2021. Natural language processing for comprehensive service composition in cloud manufacturing systems. Procedia Manuf. 55:343–349. doi:10.1016/j.promfg.2021.10.048.
  • Bye RJ, Aalberg AL. 2018. Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports. Reliab Eng Syst Saf. 176:174–186. doi:10.1016/j.ress.2018.03.033.
  • Cariou P, Mejia MQ, Wolff FC. 2007. An econometric analysis of deficiencies noted in port state control inspections. Marit Policy Manag. 34:243–258. doi:10.1080/03088830701343047.
  • Cebi S, Celik M, Cicek K. 2009. Prioritization of the VIQ items within SIRE program for an oil tanker ship. 2009 International Conference on Computers and Industrial Engineering, CIE 2009 449–452. doi:10.1109/iccie.2009.5223890.
  • Chuah LF, Mokhtar K, Bakar AA, Othman MR, Osman NH, Bokhari A, Mubashir M, Abdullah MA, Hasan M. 2022. Marine environment and maritime safety assessment using Port State Control database. Chemosphere. 304:135245. doi:10.1016/j.chemosphere.2022.135245.
  • Cicek K, Kurtel G. 2022. A quantified ship condition inspection model based on SWARA and SAW. Int J Inf Technol Decis Mak. 1–36. doi:10.1142/S0219622022500717.
  • Crowston K, Allen EE, Heckman R. 2012. Using natural language processing technology for qualitative data analysis. Int J Soc Res Methodol. 15:523–543. doi:10.1080/13645579.2011.625764.
  • Elsheikh AH, Sharshir SW, Abd Elaziz M, Kabeel AE, Guilan W, Haiou Z. 2019. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol Energy. 180:622–639. doi:10.1016/j.solener.2019.01.037.
  • Filom S, Amiri AM, Razavi S. 2022. Applications of machine learning methods in port operations – A systematic literature review. Transport Res Part E: Logist Transport Rev. 161:102722. doi:10.1016/j.tre.2022.102722.
  • Fu J, Chen X, Wu S, Shi C, Wu H, Zhao J, Xiong P. 2020. Mining ship deficiency correlations from historical port state control (PSC) inspection data. PLoS One. 15:e0229211. doi:10.1371/journal.pone.0229211.
  • Gan L, Ye B, Huang Z, Xu Y, Chen Q, Shu Y. 2023. Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety. Ocean Coast Manag. 240:106660. doi:10.1016/j.ocecoaman.2023.106660.
  • Grbic L, ēulin J, Perkovic T. 2018. Sire inspections on Oil tankers. TransNav, Int J Mar Navig Saf Sea Transp. 12:359–362. doi:10.12716/1001.12.02.17.
  • Hao J, Ho TK. 2019. Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. J Educ Behav Stat. 44:348–361. doi:10.3102/1076998619832248.
  • Heij C, Bijwaard GE, Knapp S. 2011. Ship inspection strategies: Effects on maritime safety and environmental protection. Transport Res Part D: Transp Environ. 16:42–48. doi:10.1016/j.trd.2010.07.006.
  • Heilig L, Stahlbock R, Voß S. 2020. From digitalization to data-driven decision making in container terminals. Oper Res/Comput Sci Interfaces Ser. 64:125–154. doi:10.1007/978-3-030-39990-0_6.
  • Hellton KH, Tveten M, Stakkeland M, Engebretsen S, Haug O, Aldrin M. 2022. Real-time prediction of propulsion motor overheating using machine learning. J Mar Eng Technol. 21:334–342. doi:10.1080/20464177.2021.1978745.
  • Ibragim AS. 2021. Comparative analysis of artificial neural networks and multi-agent systems. News of the Kabardin-Balkar Scientific Center of RAS. 1(99):20–27. doi:10.35330/1991-6639-2021-1-99-20-27.
  • Ismail M, Suhrab R, Abdullah M, Sayed A, Muniandy TD, Faizal A, Fuad A, Said MH, Ahmed T. 2022. Ship detention factors under port state control in Malaysia. Specialusis Ugdymas/Special Education. 2022:1.
  • Kececi T, Arslan O. 2017. SHARE technique: A novel approach to root cause analysis of ship accidents. Saf Sci. 96:1–21. doi:10.1016/j.ssci.2017.03.002.
  • Kim Te, Nazir S, Øvergård KI. 2016. A STAMP-based causal analysis of the Korean Sewol ferry accident. Saf Sci. 83:93–101. doi:10.1016/j.ssci.2015.11.014.
  • Lan H, Ma X, Qiao W, Ma L. 2022. On the causation of seafarers’ unsafe acts using grounded theory and association rule. Reliab Eng Syst Saf. 223:108498. doi:10.1016/j.ress.2022.108498.
  • Lazakis I, Dikis K, Michala AL, Theotokatos G. 2016. Advanced ship systems condition monitoring for enhanced inspection, maintenance and decision making in ship operations. Transp Res Procedia. 14:1679–1688. doi:10.1016/j.trpro.2016.05.133.
  • Lee SK, Kim B, Huh M, Park J, Kang S, Cho S, Lee D, Lee D. 2014. Knowledge discovery in inspection reports of marine structures. Expert Syst Appl. 41:1153–1167. doi:10.1016/j.eswa.2013.07.109.
  • Li C, Chen Y, Shang Y. 2022. A review of industrial big data for decision making in intelligent manufacturing. Eng Sci Technol Int J. 29:101021. doi:10.1016/j.jestch.2021.06.001.
  • Li T, Alipour M, Harris DK. 2021. Context-aware sequence labeling for condition information extraction from historical bridge inspection reports. Adv Eng Inf. 49:101333. doi:10.1016/j.aei.2021.101333.
  • Moan T. 2005. Reliability-based management of inspection, maintenance and repair of offshore structures. Struct Infrastruct Eng. 1:33–62. doi:10.1080/15732470412331289314.
  • Munim ZH, Dushenko M, Jimenez VJ, Shakil MH, Imset M. 2020. Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions. 47(5):577–597. doi:10.1080/03088839.2020.1788731.
  • Nadkarni PM, Ohno-Machado L, Chapman WW. 2011. Natural language processing: An introduction. J Am Med Inform Assoc. 18:544–551. doi:10.1136/amiajnl-2011-000464.
  • Navas de Maya B, Arslan O, Akyuz E, Kurt RE, Turan O. 2022. Application of data-mining techniques to predict and rank maritime non-conformities in tanker shipping companies using accident inspection reports. Ships Offsh Struct. 17:687–694. doi:10.1080/17445302.2020.1862530.
  • Pimentel JF, Murta L, Braganholo V, Freire J. 2019. A large-scale study about quality and reproducibility of jupyter notebooks. IEEE International Working Conference on Mining Software Repositories 2019-May. 507–517. doi:10.1109/MSR.2019.00077.
  • Ren J. 2012. ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowl Based Syst. 26:144–153. doi:10.1016/j.knosys.2011.07.016.
  • Rosa JPS, Guerra DJD, Horta NCG, Martins RMF, Lourenço NCC. 2020. Overview of Artificial Neural Networks. SpringerBr Appl Sci Technol. 458:21–44. doi:10.1007/978-3-030-35743-6_3.
  • Rose RL, Puranik TG, Mavris DN. 2020. Natural language processing based method for clustering and analysis of aviation safety narratives. Aerospace. 7:1–22. doi:10.3390/aerospace7100143.
  • Roy K, Debdas S, Kundu S, Chouhan S, Mohanty S, Biswas B. 2021. Application of natural language processing in healthcare. Comput Intell Healthc Inform. ch(21):393–407. doi:10.1002/9781119818717.ch21.
  • Tixier AJP, Hallowell MR, Rajagopalan B, Bowman D. 2016. Automated content analysis for construction safety: A natural language processing system to extract precursors and outcomes from unstructured injury reports. Autom Constr. 62:45–56. doi:10.1016/j.autcon.2015.11.001.
  • Trappey AJC, Trappey CV, Wu JL, Wang JWC. 2020. Intelligent compilation of patent summaries using machine learning and natural language processing techniques. Adv Eng Inf. 43:101027. doi:10.1016/j.aei.2019.101027.
  • Vanneschi L, Silva S. 2023. Artificial Neural Networks. Nat Comput Ser. 161–204. doi:10.1007/978-3-031-17922-8_7.
  • Vasilakes J, Zhou S, Zhang R. 2020. Natural language processing. Mach Learn Cardiovasc Med. 123–148. doi:10.1016/B978-0-12-820273-9.00006-3.
  • Wang H, Liu Z, Wang X, Graham T, Wang J. 2021. An analysis of factors affecting the severity of marine accidents. Reliab Eng Syst Saf. 210:107513. doi:10.1016/J.RESS.2021.107513.
  • Wang J, Zhou Y, Zhuang L, Shi L, Zhang S. 2023. A model of maritime accidents prediction based on multi-factor time series analysis. J Mar Eng Technol. 22:153–165. doi:10.1080/20464177.2023.2167269.
  • Wang S, Yan R, Qu X. 2019. Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation. Transp Res B, Methodol. 128:129–157. doi:10.1016/j.trb.2019.07.017.
  • Xiao Y, Wang G, Lin KC, Qi G, Li KX. 2020. The effectiveness of the New inspection regime for port state control: application of the Tokyo MoU. Mar Policy. 115:103857. doi:10.1016/j.marpol.2020.103857.
  • Yan R, Wang S. 2019. Ship Inspection by Port State Control—Review of Current Research. Smart Innov, Syst Technol. 149:233–241. doi:10.1007/978-981-13-8683-1_24.
  • Yang Z, Yang Z, Yin J. 2018. Realising advanced risk-based port state control inspection using data-driven Bayesian networks. Transp Res A Policy Pract. 110:38–56. doi:10.1016/j.tra.2018.01.033.
  • Youn IH, Kim SC. 2019. Preventive maintenance topic models for LNG containment systems of LNG marine carriers using dock specifications. Applied Sciences (Switzerland) 9, 1202. doi:10.3390/app9061202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.