3,372
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

, , , , , , , , , , , , , , , , , , , & show all

References

  • Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372:1231–9.
  • Gatherer D, Kohl A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol. 2015;97:269–73.
  • Guzman MG, Harris E. Dengue. Lancet. 2014;385:453–65.
  • Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19:156–67.10.1038/nm.3073
  • Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic diversity and protective efficacy of the RTS, S/AS01 malaria vaccine. N Engl J Med. 2015;373:2025–37.10.1056/NEJMoa1505819
  • Halbroth BR, Draper SJ. Recent developments in malaria vaccinology. Adv Parasitol. 2015;88:1–49.10.1016/bs.apar.2015.03.001
  • Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine. 2015;33:D13–D23.10.1016/j.vaccine.2015.07.091
  • Thomas SJ, Rothman AL. Trials and tribulations on the path to developing a dengue vaccine. Vaccine. 2015;33:D24–D31.10.1016/j.vaccine.2015.05.095
  • Schwartz LM, Halloran ME, Durbin AP, Longini IM Jr. The dengue vaccine pipeline: Implications for the future of dengue control. Vaccine. 2015;33:3293–8.10.1016/j.vaccine.2015.05.010
  • Lim SP, Noble CG, Shi PY. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res. 2015;119:57–67.10.1016/j.antiviral.2015.04.010
  • Chen YL, Yokokawa F, Shi PY. The search for nucleoside/nucleotide analog inhibitors of dengue virus. Antiviral Res. 2015;122:12–9.10.1016/j.antiviral.2015.07.010
  • Lim SP, Wang QY, Noble CG, Chen YL, Dong H, Zou B, et al. Ten years of dengue drug discovery: progress and prospects. Antiviral Res. 2013;100:500–19.10.1016/j.antiviral.2013.09.013
  • Xie X, Zou J, Wang QY, Shi PY. Targeting dengue virus NS4B protein for drug discovery. Antiviral Res. 2015;118:39–45.10.1016/j.antiviral.2015.03.007
  • Ahola T, Courderc T, Ng LF, Hallengard D, Powers A, Lecuit M, et al. Therapeutics and vaccines against chikungunya virus. Vector Borne Zoonotic Dis. 2015;15:250–7.10.1089/vbz.2014.1681
  • Kortekaas J. One health approach to Rift valley fever vaccine development. Antiviral Res. 2014;106:24–32.10.1016/j.antiviral.2014.03.008
  • Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernández-Triana LM, et al. Rift valley fever virus: a review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine. 2015;33:5520–31.10.1016/j.vaccine.2015.08.020
  • Newby G, Hwang J, Koita K, Chen I, Greenwood B, von Seidlein L, et al. Review of mass drug administration for malaria and its operational challenges. Am J Trop Med Hyg. 2015;93:125–34.10.4269/ajtmh.14-0254
  • Wells TN, Hooft van Huijsduijnen R, Van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov. 2015;14:424–42.10.1038/nrd4573
  • Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. Parasite. 2014;21:61.10.1051/parasite/2014059
  • Norris LC, Main BJ, Lee Y, Collier TC, Fofana A, Cornel AJ, et al. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc Natl Acad Sci USA. 2015;112:815–20.10.1073/pnas.1418892112
  • Yewhalaw D, Asale A, Tushune K, Getachew Y, Duchateau L, Speybroeck N. Bio-efficacy of selected long-lasting insecticidal nets against pyrethroid resistant Anopheles arabiensis from South-Western Ethiopia. Parasit Vectors. 2012;5:159.10.1186/1756-3305-5-159
  • Ngufor C, N’Guessan R, Fagbohoun J, Subramaniam K, Odjo A, Fongnikin A, et al. Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cove, southern Benin: implications for the evaluation of novel vector control products. Malar J. 2015;14:464.10.1186/s12936-015-0981-z
  • Sande S, Zimba M, Chinwada P, Masendu HT, Mazando S, Makuwaza A. The emergence of insecticide resistance in the major malaria vector Anopheles funestus (Diptera: Culicidae) from sentinel sites in Mutare and Mutasa Districts, Zimbabwe. Malar J. 2015;14:466.10.1186/s12936-015-0993-8
  • Djogbenou LS, Assogba B, Essandoh J, Constant EA, Makoutode M, Akogbeto M, et al. Estimation of allele-specific Ace-1 duplication in insecticide-resistant Anopheles mosquitoes from West Africa. Malar J. 2015;14:507.10.1186/s12936-015-1026-3
  • Alout H, Labbe P, Berthomieu A, Makoundou P, Fort P, Pasteur N, et al. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes. Heredity (Edinb). 2015;116:224–31.
  • Misra BR, Gore M. Malathion resistance status and mutations in acetylcholinesterase gene (Ace) in Japanese Encephalitis and Filariasis vectors from endemic area in India. J Med Entomol. 2015;52:442–6.10.1093/jme/tjv015
  • Giraldo-Calderon GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 2015;43:D707–D13.10.1093/nar/gku1117
  • Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013;29:460–8.10.1016/j.pt.2013.07.003
  • Urdaneta-Marquez L, Failloux AB. Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infect Genet Evol. 2011;11:253–61.10.1016/j.meegid.2010.11.020
  • Loaiza JR, Bermingham E, Sanjur OI, Scott ME, Bickersmith SA, Conn JE. Review of genetic diversity in malaria vectors (Culicidae: Anophelinae). Infect Genet Evol. 2012;12:1–12.10.1016/j.meegid.2011.08.004
  • Mitri C, Vernick KD. Anopheles gambiae pathogen susceptibility: the intersection of genetics, immunity and ecology. Curr Opin Microbiol. 2012;15:285–91.10.1016/j.mib.2012.04.001
  • Kean J, Rainey SM, McFarlane M, Donald CL, Schnettler E, Kohl A, et al. Fighting arbovirus transmission: natural and engineered control of vector competence in Aedes mosquitoes. Insects. 2015;6:236–78.10.3390/insects6010236
  • Fraser MJ Jr. Insect transgenesis: current applications and future prospects. Annu Rev Entomol. 2012;57:267–89.10.1146/annurev.ento.54.110807.090545
  • Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, et al. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica. 2011;139:33–9.10.1007/s10709-010-9482-8
  • Alphey L. Genetic control of mosquitoes. Annu Rev Entomol. 2014;59:205–24.10.1146/annurev-ento-011613-162002
  • Alphey N, Bonsall MB. Interplay of population genetics and dynamics in the genetic control of mosquitoes. J R Soc Interface. 2014;11:20131071.10.1098/rsif.2013.1071
  • Franz AW, Clem RJ, Passarelli AL. Novel genetic and molecular tools for the investigation and control of dengue virus transmission by mosquitoes. Curr Trop Med Rep. 2014;1:21–31.10.1007/s40475-013-0007-2
  • Alphey L, McKemey A, Nimmo D, Neira Oviedo M, Lacroix R, Matzen K, et al. Genetic control of Aedes mosquitoes. Pathog Glob Health. 2013;107:170–9.10.1179/2047773213Y.0000000095
  • Coetzee M, Koekemoer LL. Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. Annu Rev Entomol. 2013;58:393–412.10.1146/annurev-ento-120811-153628
  • Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol. 2015;15:97–102.10.1016/j.coviro.2015.08.011
  • Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun. 2014;6:169–81.10.1159/000353602
  • Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses. 2014;6:4294–313.10.3390/v6114294
  • Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology. 2012;427:90–7.10.1016/j.virol.2012.02.016
  • Mosimann AL, Bordignon J, Mazzarotto GC, Motta MC, Hoffmann F, Santos CN. Genetic and biological characterization of a densovirus isolate that affects dengue virus infection. Mem Inst Oswaldo Cruz. 2011;106:285–92.10.1590/S0074-02762011000300006
  • Rainey SM, Shah P, Kohl A, Dietrich I. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol. 2014;95:517–30.10.1099/vir.0.057422-0
  • Iturbe-Ormaetxe I, Walker T, SL ON. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011;12:508–18.10.1038/embor.2011.84
  • Johnson KN. The impact of Wolbachia on virus infection in mosquitoes. Viruses. 2015;7:5705–17.10.3390/v7112903
  • Lambrechts L, Ferguson NM, Harris E, Holmes EC, McGraw EA, O’Neill SL, et al. Assessing the epidemiological effect of Wolbachia for dengue control. Lancet Infect Dis. 2015;15:862–6.10.1016/S1473-3099(15)00091-2
  • http://ec.europa.eu/research/infrastructures/index_en.cfm.
  • Angelini R, Finarelli AC, Angelini P, Po C, Petropulacos K, Macini P, et al. An outbreak of chikungunya fever in the province of Ravenna, Italy. Euro Surveill. 2007;12:E070906.1.
  • Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT. Chikungunya: a re-emerging virus. Lancet. 2012;379:662–71.10.1016/S0140-6736(11)60281-X
  • Coffey LL, Failloux AB, Weaver SC. Chikungunya virus–vector interactions. Viruses. 2014;6:4628–63.10.3390/v6114628
  • Weaver SC, Forrester NL. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res. 2015;120:32–9.10.1016/j.antiviral.2015.04.016
  • Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4:e646.10.1371/journal.pntd.0000646
  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11:1177–85.
  • Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4: e08347.
  • Charrel RN, Attoui H, Butenko AM, Clegg JC, Deubel V, Frolova TV, et al. Tick-borne virus diseases of human interest in Europe. Clin Microbiol Infect. 2004;10:1040–55.10.1111/j.1469-0691.2004.01022.x
  • Gritsun TS, Nuttall PA, Gould EA. Tick-borne flaviviruses. Adv Virus Res. 2003;61:317–71.10.1016/S0065-3527(03)61008-0
  • Mehlhorn H, Mehlhorn T, Müller M, Vogt M, Rissland J. Tick survey for prevalent pathogens in peri-urban recreation sites in Saarland and Rhineland-Palatinate (Germany). Parasitol Res. 2016;115:1167–72.10.1007/s00436-015-4852-x
  • Aureli S, Galuppi R, Ostanello F, Foley JE, Bonoli C, Rejmanek D, et al. Abundance of questing ticks and molecular evidence for pathogens in ticks in three parks of Emilia-Romagna region of Northern Italy. Ann Agric Environ Med. 2015;22:459–66.10.5604/12321966.1167714
  • Schnettler E, Tykalová H, Watson M, Sharma M, Sterken MG, Obbard DJ, et al. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res. 2014;42:9436–46.10.1093/nar/gku657
  • Barry G, Alberdi P, Schnettler E, Weisheit S, Kohl A, Fazakerley JK, et al. Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Exp Appl Acarol. 2013;59:319–38.10.1007/s10493-012-9598-x
  • Villar M, Ayllón N, Alberdi P, Moreno A, Moreno M, Tobes R, et al. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol Cell Proteomics. 2015;14:3154–72.10.1074/mcp.M115.051938
  • Villar M, Ayllón N, Kocan KM, Bonzón-Kulichenko E, Alberdi P, Blouin EF, et al. Identification and characterization of Anaplasma phagocytophilum proteins involved in infection of the tick vector, Ixodes scapularis. PLOS ONE. 2015;10:e0137237.10.1371/journal.pone.0137237
  • Weisheit S, Villar M, Tykalova H, Popara M, Loecherbach J, Watson M, et al. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors. 2015;8:599.10.1186/s13071-015-1210-x
  • Ayllon N, Naranjo V, Hajdusek O, Villar M, Galindo RC, Kocan KM, et al. Nuclease tudor-SN is involved in tick dsRNA-mediated RNA interference and feeding but not in defense against Flaviviral or Anaplasma phagocytophilum rickettsial infection. PLOS ONE. 2015;10:e0133038.10.1371/journal.pone.0133038
  • Moutailler S, Popovici I, Devillers E, Vayssier-Taussat M, Eloit M. Diversity of viruses in Ixodes ricinus, and characterization of a neurotropic strain of Eyach virus. New Microbes New Infect. 2016;11:71–81.10.1016/j.nmni.2016.02.012
  • Carpenter S, Wilson A, Mellor PS. Culicoides and the emergence of bluetongue virus in northern Europe. Trends Microbiol. 2009;17:172–8.10.1016/j.tim.2009.01.001
  • Gibbens N. Schmallenberg virus: a novel viral disease in northern Europe. The Veterinary record. 2012;170:58.
  • Beer M, Conraths FJ, van der Poel WH. ‘Schmallenberg virus’–a novel orthobunyavirus emerging in Europe. Epidemiol Infect. 2013;141:1–8.10.1017/S0950268812002245
  • Powers AM. Risks to the Americas associated with the continued expansion of chikungunya virus. J Gen Virol. 2014;96:1–5.
  • Schotthoefer AM, Frost HM. Ecology and epidemiology of Lyme Borreliosis. Clin Lab Med. 2015;35:723–43.10.1016/j.cll.2015.08.003
  • Ergonul O. Crimean–Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol. 2012;2:215–20.10.1016/j.coviro.2012.03.001
  • Papa A, Mirazimi A, Köksal I, Estrada-Pena A, Feldmann H. Recent advances in research on Crimean–Congo hemorrhagic fever. J Clin Virol. 2015;64:137–43.10.1016/j.jcv.2014.08.029
  • Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.
  • Kistler KE, Vosshall LB, Matthews BJ. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 2015;11:51–60.10.1016/j.celrep.2015.03.009
  • Merkling SH, van Rij RP. Beyond RNAi: antiviral defense strategies in Drosophila and mosquito. J Insect Physiol. 2013;59:159–70.10.1016/j.jinsphys.2012.07.004
  • Bronkhorst AW, van Rij RP. The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol. 2014;7:19–28.10.1016/j.coviro.2014.03.010
  • Donald CL, Kohl A, Schnettler E. New insights into control of arbovirus replication and spread by insect RNA interference pathways. Insects. 2012;3:511–31.10.3390/insects3020511
  • Sim S, Jupatanakul N, Dimopoulos G. Mosquito immunity against arboviruses. Viruses. 2014;6:4479–504.10.3390/v6114479
  • Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10:307–10.10.1016/j.chom.2011.09.006
  • Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, et al. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science. 2010;330:86–8.10.1126/science.1191864
  • Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316:1718–23.10.1126/science.1138878
  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–49.10.1126/science.1076181
  • Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean kJ, Dimopoulos G. Engineered Anopheles immunity to plasmodium infection. PLoS Pathog. 2011;7:e1002458.10.1371/journal.ppat.1002458
  • Isaacs AT, Li F, Jasinskiene N, Chen X, Nirmala X, Marinotti O, et al. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog. 2011;7:e1002017.10.1371/journal.ppat.1002017
  • Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015;9:e0003864.10.1371/journal.pntd.0003864
  • Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA. 2015;112:E6736–E6743.10.1073/pnas.1521077112